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Abstract. Querying ontologies is an every-day activity that users need.
This interaction will improve when the query is more expressive and eas-
ier to develop. For this purpose, a visual query language is an ideal mean
for users and ontology engineers for creating queries taking advantage of
the easy-to-understand and low time and cost characteristics, specially,
for users which does not know textual query languages. On the other
side, SPARQL-DL is a powerful and expressive textual query language for
OWL-DL based ontologies that can combine TBox/ABox/RBox queries.
Considering the advantage of both, we present in this work a visual
query language that can be interpreted as SPARQL-DL sentences and
thus being used for querying ontologies for its structure and/or instance
information. Altogether, we use this idea to create a modified version
of crowd, a Web modelling tool with reasoning support, that enables
to implement and tests the presented graphical language along with the
needed SPARQL-DL support for solving queries with the user’s provided
OWL 2 ontologies in any of its linearisations.
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1 Introduction

The Semantic Web [1, 2] includes numerous ontologies that can be mixed se-
mantically. These ontologies provide support for data and meaning for each
knowledge base that an organisation can provide in its Web page. The usability
of this information is key for these organisations which queries these data with
no limitation in expressiveness. Specially, using both levels of DL: structural and
assertional. Once created the ontologies, ontology engineers require a query for-
mulation tool that easily express the user’s information needs in terms of queries
over ontologies. Examples of this are OptiqueVQS [3], OntoVQL [4], etc.

Not less important is to provide tools to users and domain experts for creating
and accessing such information they need in a proper way. Querying using visual
techniques provides a layer of abstractions that helps to understand easily the
entire ontology. crowd1 [5] is a Web tool for graphical ontology modelling created

1 http://crowd.fi.uncoma.edu.ar



for achieving that purpose. It has been designed for being extendable to other vi-
sual language and for supporting reasoning services such as consistency checking.
Nowadays, it provides support for standard conceptual modelling languages like
UML and EER. Currently, ORM [6] and OVM [7] is under development. Also,
another version of crowd has been released with support for the KF-metamodel
[8, 9] which allows the user to create a model in one language, and through an
intermediate representation which summarises common elements, creates a rep-
resentation of the same model in EER, ORM or UML trying to preserve the
semantics of the original.

SPARQL-DL is a query language (QL) for OWL-DL [10] ontologies signifi-
cantly more expressive than existing DL QL by allowing combined ABox, RBox
and TBox queries. It is aligned with SPARQL [11] to improve interoperability
of applications on the Semantic Web and to allow to be covered by the standard
reasoning services OWL-DL reasoners provide [12].

Aiming at integrating SPARQL-DL in an ontology engineering environment,
this paper introduces a graphical language that preserves similarities to UML
for creating visual SPARQL-DL queries. Furthermore, it presents a modification
of the crowd architecture that allows visual SPARQL-DL queries. Implementing
a query language in an already developed tool for creating ontologies via visual
languages is not only the next logical step, but also a relevant one as its approach
to ontology engineers mean to understand and study their ontologies and also
help to create queries that their users require for satisfying their information
needs. Moreover, it is possible to provide more reasoning services like anti-pattern
based searches, in order to look for modelling issues in the ontology by obtaining
a subset of the input concepts and rules and displaying them visually. However,
a tool that supports both scenarios, design and query in a graphical way, and
an implementation of a SPARQL-DL-based visual language is not available to
our best of our knowledge.

The rest of the work is structured as follows: Section 2 introduces some well-
known textual and visual query languages that has been researched through this
work. Section 3 describes the UML-like language we propose for representing
SPARQL-DL queries, the mapping rules and an example of query. Later, section
4 describes crowd architecture and the implementation needed for providing
support to the proposed visual language and the reasoner for executing the
queries. Section 5 shows possible applications of for this language. Finally, in
section 6 summarises the paper and discuss future works.

2 Textual and Visual Query Languages

Textual query languages for ontologies provides a mean to retrieve information
and structure for the user. The most common of these languages is OWLlink [13],
the successor of DIG [14]. OWLlink provides a neutral mechanism for accessing
OWL and OWL 2 reasoner functionality through a declarative interface whose
protocol can be bound to a concrete transport mechanism like HTTP/1.1 and
XML. OWLlink provides a wide spectrum of queries we can make, but they can



only affect the ABox, the TBox or the RBox separately. On the other hand,
nRQL[15] is another DL query interface focused on retrieving ABox individuals
that satisfy specific conditions which extends the expressivity of Racer [16] query
language. However we cannot use it to retrieve structural definition from the
ontology. Finally, SPARQL-DL is a powerful and expressive query language for
OWL-DL that can combine ABox/TBox/RBox queries. It aligns with SPARQL
and is simple enough to be easily built on top of existing OWL-DL reasoners
[12].

In regard to visual query languages (VQL), we can find a variety of languages
focused on querying OWL-DL ontologies. They present different ways of querying
an ontology, but they does not provide a SPARQL-DL representation nor match
its expressiveness. To our knowledge, there are no visual language created in
base of SPARQL-DL publicly available.

In OntoVQL [4], queries are modelled by a graph connected style where
concepts and individuals are nodes and roles are drawn by edges. Operators as
“and” and “or” can be used for connecting more than one sub-query. Similarly to
others visual languages, like SEWASIE, GRQL and OZONE, all these provides
expressiveness enough for querying about the ABox only through a database or
a nRQL query mapping.

GrOWL-Query [17] allows us to query about an ontology by representing
the underlying DL semantics of OWL ontologies and replacing individuals by
variables. Knowledge about OWL and DL is needed for using this language
augmenting the learning curve.

A visual query system like OptiqueVQS also provides a visual language along
with different techniques that facilitates the query formulation. The ability to
query the ontology through SPARQL only allows OptiqueVQS to query about
the ABox.

3 A UML-like Graphical Language for SPARQL-DL

A UML-like language is selected for preserving the objective of being accessible
to the user and easy to understand. This section describes a UML-like language
and a mapping from some of its graphical primitives to a SPARQL-DL scheme,
which allows us to compute the query.

3.1 A UML-Like Visual Query Language

We define a UML-like visual language in which classes, associations, generali-
sations are primitives that represents concepts, roles and inclusion in DL, re-
spectively. Objects in UML are depicted similarly as classes, where the name is
combined with the instance name, a colon (“:”) and the Classifier name, all of
them underlined [18]. This primitive is for representing ABox instances in DL,
providing a way for querying about both TBox and ABox.

Associations can have names which we can use for representing roles names
but multiplicity is not considered in this preliminary version. Class or instances



classifier names are used as concepts names in the DL representation. All names
can be replaced with variables for requesting a set of answers that matches any
element in the TBox and/or ABox that meets the UML diagram representation.
Variables are written prefixed with a question mark. Depicting an UML primitive
named without a variable is considering as asking for existence of that element in
the input ontology. For example, an UML class named “Project” will represent
the concept Project in the ontology and the output will be asserted as true if
founded in the input TBox or false otherwise.

?x

?x ?y

?x ?y

?x ?y
?role

SELECT * WHERE {Class(?x)}

SELECT * WHERE {Class(?x), Class(?y),

DirectSubclassOf(?y, ?x)}

SELECT * WHERE {Class(?x), Class(?y),

EquivalentClass(?x, ?y)}

SELECT * WHERE {Class(?x), Class(?y),

Domain(?role, ?x), Range(?role, ?y)}

?i:?c

?i1:?c1 ?i2:?c2
?role

SELECT * WHERE {Type(?i, ?c)}

SELECT * WHERE {
PropertyValue(?c1, ?role, ?c2),

Type(?i1, ?c1), Type(?i2, ?c2)}

Fig. 1. Summary of the UML primitives mapping to SPARQL-DL.

3.2 SPARQL-DL Encoding

SPARQL-DL is used as a textual language for representing queries in crowd
VQL. This language posses two types of queries: ASK sentence for querying
about existence or assertions, which returns a true/false answer and SELECT
queries for retrieving a set of elements that matches the provided condition.

On Figure 1, a summary of UML primitives with variables are depicted with
their respective SPARQL-DL encoding. Using variables in the graphical query is
considered as a query for retrieving a set of elements that matches the user’s con-
dition, and thus, we use a SELECT sentence. The conditions are determined by
the query atoms, which are constructed depending on the primitives used in the
diagram. Classes are interpreted as Class() in SPARQL-DL, allowing the engine
to search for concepts in the input. A generalisation requires the representation in
SPARQL-DL of the two classes or objects involved and a DirectSubclassOf()

sentence for searching a direct subclass relation between these two elements. For



equivalence, the sentence EquivalentClass() is used. Associations are mapped
into a Domain() and Range() query atoms for requesting the classes involved in
the role.

Instances in the ABox can be queried by the objects UML representation,
where we can use the name of the instance and class in a Type(?i, ?c) SPARQL-
DL sentence which requests the instance “?i” of a concept “?c”. Roles also can
be mapped by a combination of three query atoms: a PropertyValue() and two
Type(), the first one for searching the classes involved in the role, and the rest
for retrieving the instance that can participate on it.

ASK queries are used when the graphical query provides names without
variables. In this case, they are represented similarly as the SELECT queries
but providing the name string.

The SPARQL-DL encoding order which we currently support emphasise the
primitives related to querying the TBox. First, classes are mapped, then gen-
eralisations and finally associations. Next, primitives related to the ABox are
considered: objects, generalisations between objects and roles (associations be-
tween objects).

?x ?z

?y

hasAuthor

Fig. 2. A query expressed in UML class diagram model.

3.3 Example UML to SPARQL-DL

In the example presented on Figure 2 the user creates a model which requests all
classes involved in the model, where a class ”X” is in relation named hasAuthor

with another class ”Z” and is a parent of class ”Y”. The conversion of this
model to a SPARQL-DL sentence will start by creating a query atom for each
class and then for each relation. Then, it will detect the use of variables and
create a SELECT statement with all of them. The sentence generated will be as
follows:

SELECT ?x,?z,?y WHERE

{

Class(?x), Class(?z), Class(?y), DirectSubclassOf(?y,?x),

Domain(?x,:hasAuthor), Range(?z,:hasAuthor)

}

Afterwards, the SPARQL-DL reasoner will be used for processing the query
with the user ontology. All the results will be displayed on the user interface.



4 crowd for VQL

The crowd architecture, depicted in Figure 3, consists in a client-server style
where the client provides a Web interface following the view-model architecture
provided by the BackboneJS and JointJS libraries. This allows the Javascript in-
terface to generate a JSON representation of the user’s model for sending to the
server. The server side provides reasoning services while creating a DL encod-

Fig. 3. crowd architecture.

ing from the JSON input. The module responsible for this is called ”OWLlink
Translator”, which first creates an ontology in OWL 2 according to the method
described by [19, 20]. For providing consistency checking services, a ”Query Gen-
erator” module defines the necessary queries for the reasoner depending on the
user’s model and appends them to the OWLlink [13] document with the OWL
2 ontology already generated. The ”Reasoner” module executes and maintains
the program which use the OWLlink document as input, elaborating the an-
swer which will be interpreted by the ”Response Processor” creating a JSON
understandable by the interface.

In Figure 4, the overall visual query processing is depicted. The visual query
model designed by the user and the ontology are imported from the front-end
interface. Both elements are sent to the back-end, the first in JSON format for
creating the SPARQL-DL encoding in the SPARQL-DL Processor. Finally, the
Reasoner receives both inputs, the ontology in OWL 2 syntax and the query,
processes them and generates the output results in JSON or XML which can be
used for sending back to the interface for displaying to the user.



Query Model

Ontology

SPARQL-DL
Processor

Reasoner

Front-end Back-end

JSON

OWL 2

SPARQL-DL JSON/

XML

Fig. 4. The back-end steps for processing the query modelled by the user.

For implementing this process, some features has to be added to the initial
version of crowd. The mapping rules described before were implemented for cre-
ating the SPARQL-DL encoding. The SPARQL-DL reasoner is called similarly
as the current one with its own parameters and input files. Finally, the output
is captured and processed by an extended version of the Response Processor for
sending to the interface for the user consumption.

Currently, the graphical expressiveness of crowd VQL is constrained to UML
classes, instances, generalisations and binary associations. Remains the rest of
UML class diagram representation and SPARQL-DL encoding for future devel-
opment.

5 Applications

Visual techniques for accessing data facilitate the design of queries for users
and developers, reducing the learning curve and also abstract the complexity
of the underlying logical query language. Moreover, it is possible to use the
UML-like syntax for searching ontology patterns [21] and anti-patterns [22, 23]
represented in a visual context and thus helping the engineer to raise the quality
of the ontology design. In the same direction, other applications are related to
the bottom-up construction of ontologies by means of non-standard services such
as last common subsumers and most specific concepts [24]. Lastly, reasoners can
also search for a possible pattern in a top-down way by querying the existence
of part of the pattern into the input ontology, and thus suggesting the missing
elements which completes them [25, 26]. For example, consider the pattern “List
2” presented in Figure 5. Part of the pattern is queried by using the UML class
diagram depicted into the input ontology. The missing elements of the pattern
can be suggested to the user for appending to the input ontology according to
the results of the query.

Searching for anti-patterns represented in a graphical context can avoid situ-
ations that normally result in inconsistencies. This anti-patterns can be imported
or drawn as a query in a UML-like diagram, making it easier to the user to re-
member and to understand. For example, searching for the logical anti-pattern
called “Synonym or Equivalence” (SOE) explained in [28] requires to look into
the ontology for the expression C1 ≡ C2, which latter should be treated by the
user removing C2 according to the pattern solution. The Figure 6 displays a
UML representation for the expression.



?ListItem

hasNext

Fig. 5. List pattern obtained from [27] and the UML-like query used for searching the
pattern.

?C1 ?C2

Fig. 6. UML-like diagram for querying the expression C1 ≡ C2.

6 Conclusions and Future Works

In this work, we proposed a graphical visual query language using an UML-like
notation in order to keep the consistency with the standard conceptual mod-
elling languages and reduce the curve of learning drastically. As an intermediate
language, we propose the use of SPARQL-DL a textual language, whose expres-
siveness is greater than the current implemented, like OWLlink, nRQL and DIG,
by mixing the ABox, RBox and TBox in the same query. Moreover, we modified
our Web tool named crowd for supporting this graphical language and the im-
port of ontologies in OWL-DL, creating an environment suitable for designing
the query and testing it with an ontology. The back-end has been adapted for
supporting the encoding of the graphical models with the SPARQL-DL queries
and for executing it with the provided OWL 2 ontology. A running prototype is
available following URL http://crowd.fi.uncoma.edu.ar/sparqldl/.

In future works, we expect to extend crowd with an interface for displaying
the results of the reasoning system in a tabular and graphical view instead of the
textual output. The rest of the UML class diagrams primitives not presented in
this work are considered for next releases along with their SPARQL-DL encoding.
Also, an expansion of this conceptual modelling language for supporting more
SPARQL-DL query atoms are under study for future implementations. Finally,



the inclusion of Object Constraint Language (OCL) [29] for augmenting the
expressiveness of the query is considered for future study.
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