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a b s t r a c t 

In this article, we obtain explicit approximations of the modified error function introduced 

in Cho and Sunderland (1974), as part of a Stefan problem with a temperature-dependent 

thermal conductivity. This function depends on a parameter δ, which is related to the ther- 

mal conductivity in the original phase-change process. We propose a method to obtain ap- 

proximations, which is based on the assumption that the modified error function admits a 

power series representation in δ. Accurate approximations are obtained through functions 

involving error and exponential functions only. For the special case in which δ assumes 

small positive values, we show that the modified error function presents some character- 

istic features of the classical error function, such as monotony, concavity, and boundedness. 

Moreover, we prove that the modified error function converges to the classical one when 

δ goes to zero. 
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1. Introduction 

Phase-change processes are present in a broad variety of natural, technological and industrial situations [1,5,9,17,24,25,28] .

Modeling them properly is then crucial for understanding or predicting the evolution of many physical processes. One com-

mon assumption when modeling phase-change processes is to consider constant thermophysical properties. Nevertheless, it

is known that certain materials present properties which seem to obey other laws. Recently, some models including variable

latent heat, density, melting temperature or thermal conductivity have been proposed in [2,4,21,22,34,36,44] . 

In this sense, in 1974, Cho and Sunderland presented a similarity solution for a Stefan problem in which the thermal

conductivity is a linear function of the temperature distribution [13] . It is well known that similarity solutions to Stefan

problems with constant coefficients can be expressed in terms of the error function erf , 

erf (x ) = 

2 √ 

π

∫ x 

0 

exp (−ξ 2 ) dξ x > 0 . (1)

In contrast to this, the solution obtained by Cho and Sunderland involves another function, which they have called modified

error function . It was defined as the solution to a nonlinear boundary value problem, and its existence and uniqueness
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Fig. 1. Modified error function �δ for delta = −0 . 9 , −0 . 5 , 0 , 0 . 5 , 1 , 2 over different domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

was recently proved in [10] for thermal conductivities with moderate variations. In spite of the latter, the modified error

function was widely used for solving diffusion problems [8,14,23,29,32,37,40] , even before it was formally introduced by Cho

and Sunderland in 1974 [15,45] . 

When phase-change processes come from technological or industrial problems, not only appropriate models are required

but also their solutions (or, at least, some properties of them). Sometimes, when explicit solutions are not known, models

are solved through numerical methods which are tested with experimental data. When the latter are not available, one

common practice is to test numerical methods by applying them to another problem whose explicit solution is known.

Thus, having explicit solutions to models for phase-change processes is sometimes quite useful. Many works have been done

in this direction, see for example [3,6,7,11,12,16,18–20,26,27,30,31,35,38,39,41–44,46] . Regarding the model in [13] , explicit

solutions are not known yet. Aiming to make a contribution in this sense, the main goal of this article is to propose some

approximations of the modified error function. 

In order to present our ideas clearly, we briefly recall how the modified error function arises from the original phase-

change process. For simplicity, we consider the case of a one-phase melting problem for a semi-infinite slab with phase-

change temperature T m 

, whose boundary x = 0 is maintained at a constant temperature T ∞ 

> T m 

. For this case, the thermal

conductivity from Cho and Sunderland is 

k (T ) = k 0 

{ 

1 + δ
(

T − T ∞ 

T m 

− T ∞ 

)} 

, (2) 

where k 0 > 0 is the thermal conductivity at x = 0 , and δ is some dimensionless parameter. Since T = T m 

at the free boundary,

δ > −1 becomes a necessary condition to assure the thermal conductivity is positive when x = s (t) . When the temperature

distribution is assumed to be in the form T (x, t) = A + B �δ

(
x 

2 
√ 

α0 t 

)
, 1 for A and B constant, one obtains that �δ can be

found by solving the following nonlinear boundary value problem (see details in [13] ): 

[(1 + δy (x )) y ′ (x )] ′ + 2 xy ′ (x ) = 0 0 < x < + ∞ (3a) 

y (0) = 0 (3b) 

y (+ ∞ ) = 1 . (3c) 

The solution �δ to this problem is the already mentioned modified error function . Some plots for �δ are shown in Fig. 1 .

They were obtained by numerically solving problem (3) for δ = −0 . 9 , −0 . 5 , 0 , 0 . 5 , 1 , 2 . For the special case in which δ = 0 ,

which corresponds to a constant thermal conductivity, one finds that the modified error function coincides with the classical

one. The coincidence is stronger than that shown from the numerical computations, since it can be easily proved that the

error function is the only solution to problem (3) when δ = 0 . As δ moves away from zero, the modified error function

differs more and more from the classical one. Nevertheless, both functions seem to share some properties (such as non-

negativity, boundedness and rapid convergence to 1 when x → + ∞ ). Moreover, when δ > 0, the modified error function

seems to be increasing and concave, as the error function is. Observe that −1 < δ < 0 is related to thermal conductivities
1 α0 is the coefficient of diffusion at t = 0 . 
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that decrease when temperature increases (e.g. lead, methanol), whereas δ > 0 corresponds to thermal conductivities that

increase as the temperature does (e.g. glycerin, mercury). Finally, we recall that the existence and uniqueness of �δ in the

set of non-negative bounded analytic functions was recently proved in [10] for small positive values of δ (i.e. for increasing

thermal conductivities that present moderate variations with respect to their initial value). Moreover, an upper bound δ0 for

the parameter δ was characterized as the unique positive solution to the equation: 

x 

2 

(1 + x ) 3 / 2 (3 + x )[1 + (1 + x ) 3 / 2 ] = 1 x > 0 . (4)

The approximations for the modified error function proposed in this article are based on the assumption that �δ admits

a power series representation in the parameter δ. More precisely, we assume that there exist functions ϕn defined on R 

+

such that: 

�δ(x ) = 

∞ ∑ 

n =0 

ϕ n (x ) δn x > 0 , (5)

and look for approximations �δ, m 

of the form 

�δ,m 

(x ) = 

m ∑ 

n =0 

ϕ n (x ) δn x > 0 for m ∈ N 0 . (6)

The organization of the article is as follows. First ( Section 2 ), we formally characterize each function ϕn as the solution

to a linear boundary value problem for a second order differential equation. The latter is homogeneous when n = 0 , but

presents a non-zero source term dependent on ϕk for k = 0 , . . . , n − 1 , when n ∈ N . Then ( Section 3 ), we present the zero

order approximation �δ,0 . We find that it is given by the classical error function, and we prove that �δ uniformly converges

to �δ, 0 = erf when δ goes to zero. Since theoretical results are presented, the proof will be given only for those values of

δ for which existence and uniqueness of the modified error function is known (i.e. we only consider δ → 0 + ). After that

( Section 4 ), we present the first and second order approximations �δ,1 and �δ,2 . We obtain that �δ,1 can be explicitly

written in terms of the error and exponential functions only. By contrast, �δ,2 involves some integrals whose values (explicit

dependence on x ) are not yet available in the literature. We analyze numerical errors between the approximations �δ,1 ,

�δ,2 , and the modified error function �δ when δ assumes small positive values, thus the existence and uniqueness of the

modified error is assured. From them, we conclude that the first order approximation is better than the approximation of

order two. Moreover, we find that it is also better than the approximation of zero order. We present some plots comparing

�δ,1 and �δ for some values of δ > −1 , which show good agreement. Finally ( Section 5 ) we restrict the arguments again to

small positive values of δ and prove that the modified and classical error functions share the properties of being increasing,

concave and bounded functions. 

2. Formal series representation of the modified error function 

This Section is devoted to obtain a formal characterization of the coefficients ϕn in the power series representation of

the modified error function �δ given by (5) . 

Let δ > −1 and x > 0 be given. When �δ is defined by (5) , formal computations from Eq. (3) yield 

∞ ∑ 

n =0 

∞ ∑ 

m =0 

δn + m +1 
(
ϕ 

′ 
n (x ) ϕ 

′ 
m 

(x ) + ϕ n (x ) ϕ 

′′ 
m 

(x ) 
)

+ 

∞ ∑ 

n =0 

δn 
(
ϕ 

′′ 
n (x ) + 2 xϕ 

′ 
n (x ) 

)
= 0 x > 0 . 

(7)

By introducing the following notation: 

a (x, n, m ) = ϕ 

′ 
n (x ) ϕ 

′ 
m 

(x ) + ϕ n (x ) ϕ 

′′ 
m 

(x ) x > 0 , n, m ∈ N 0 (8a)

b(x, n ) = ϕ 

′′ 
n (x ) + 2 xϕ 

′ 
n (x ) x > 0 , n ∈ N 0 , (8b)

Eq. (7) can be written as 

∞ ∑ 

n =1 

( 

n ∑ 

k =1 

a (x, k − 1 , n − k ) + b(x, n ) 

) 

δn + b(x, 0) = 0 , x > 0 . (9)

Therefore, the function �δ defined by (5) is a formal solution to problem (3) if and only if the functions ϕn , n ∈ N 0 , are

such that 
n ∑ 

k =1 

a (x, k − 1 , n − k ) + b(x, n ) = 0 x > 0 , ∀ n ∈ N , b(x, 0) = 0 , x > 0 , (10a)

ϕ n (0 

+ ) = 0 ∀ n ∈ N 0 , ϕ 0 (+ ∞ ) = 1 , ϕ n (+ ∞ ) ∀ n ∈ N . (10b)
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That is, if and only if ϕ0 and ϕn , n ∈ N , are solutions to 

2 xϕ 

′ 
0 (x ) + ϕ 

′′ 
0 (x ) = 0 x > 0 (11a) 

ϕ 0 (0 

+ ) = 0 (11b) 

ϕ 0 (+ ∞ ) = 1 (11c) 

and 

2 xϕ 

′ 
n (x ) + ϕ 

′′ 
n (x ) = −

n ∑ 

k =1 

(
ϕ 

′ 
k −1 (x ) ϕ 

′ 
n −k (x ) + ϕ k −1 (x ) ϕ 

′′ 
n −k (x ) 

)
x > 0 (12a) 

ϕ n (0 

+ ) = 0 (12b) 

ϕ n (+ ∞ ) = 0 , (12c) 

respectively. 

Remark 1. We find from (12) that functions ϕk must be known for k = 0 , . . . , n − 1 in order to find ϕn . 

The next two Sections are dedicated to present and analyse the approximations �δ, m 

when m = 0 , 1 , 2 and their

coefficients are solutions to problems (11), (12) (see (6) ). Each function �δ, m 

will be referred to as approximation of

order m . 

3. Approximation of order zero 

The approximation of order zero is �δ, 0 = ϕ 0 , where ϕ0 is a solution of problem (11) . We note that the latter coincides

with (3) when δ = 0 . Thus, as it was already mentioned, its unique solution is the error function. Hence 

�δ, 0 (x ) = erf (x ) x > 0 . (13) 

The remaining part of this Section is devoted to prove that the modified error function uniformly converges to the

classical one, when the parameter δ goes to zero. We will restrict our analysis for those values of δ for which existence and

uniqueness of the modified error function is known, i.e. to small positive values of δ [10] . Thus, our main goal will be to

prove that 

εδ, 0 → 0 and δ → 0 

+ , (14) 

where εδ,0 is the error between the classical and modified error functions, defined by 

εδ, 0 = || �δ − erf || ∞ 

. (15) 

The fact that the error function satisfies problem (3) when δ = 0 , suggests to analyse the dependence of problem (3) on

the parameter δ. We begin by recalling the main result in [10] : 

Theorem 3.1. Let δ0 be the only solution to Eq. (4) , and let 0 ≤ δ < δ0 be given. Then there exist a unique solution �δ to problem

(3) in the set K of all non-negative analytic functions in R 

+ 
0 

which are bounded by 1. Moreover, �δ is given as the unique fixed

point of the operator τ δ from K to K defined by 

τδ(h )(x ) = C δ,h 

∫ x 

0 

1 

1 + δh (η) 
exp 

(
−2 

∫ η

0 

ξ

1 + δh (ξ ) 
dξ

)
dη x ≥ 0 , (16) 

for h ∈ K , with C δ, h given by 

C δ,h = 

(∫ + ∞ 

0 

1 

1 + δh (η) 
exp 

(
−2 

∫ η

0 

ξ

1 + δh (ξ ) 
dξ

)
dη

)−1 

. (17) 

Proof. See [10] . �

Remark 2. 

1. In [10] , the case δ = 0 was not considered. This is because it corresponds to the classical case, in which the ther-

mal conductivity is constant and the modified error function is the classical one. Nevertheless, besides this physical

consideration, all theorems in [10] are still valid when δ = 0 . 
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2. From (2) , we see that d k (T ) /d T = δk 0 / (T m 

− T ∞ 

) . Thus, the bound on δ established by Theorem 3.1 to prove the existence

and uniqueness of the modified error function �δ determines a necessary condition on the data of the associated Stefan

problem to obtain similarity solutions. This condition establishes that the velocity of change of the thermal conductivity

with respect to changes on the temperature distribution must be controlled by some multiple of the ratio between the

thermal conductivity k 0 at x = 0 , and the difference between the phase-change and boundary temperatures, T m 

and T ∞ 

.

In other words, that s < δ0 k 0 / (T m 

− T ∞ 

) , where s is the slope in the linear dependence of k on T . 

Definition 3.1. We say that problem (3) is Lipschitz continuous on the parameter δ if 

∃ L > 0 / ∀ δ1 , δ2 ∈ [0 , δ0 ) : || �δ1 
− �δ2 

|| ∞ 

≤ L | δ1 − δ2 | , (18)

where �δ1 
, �δ2 

are the only solutions in K to problem (3) with parameters δ1 , δ2 , respectively. 

Thus, if problem (3) is Lipschitz continuous on δ, we find that the modified error function �δ converges uniformly

on x > 0 to the classical error function erf , when δ → 0 + . In other words, that εδ,0 → 0 when δ → 0 + . Before proving the

Lipschitz dependence of problem (3) on δ, we introduce some preparatory results in the following: 

Lemma 3.1. Let δ1 , δ2 ∈ [0, δ0 ), h , h 1 , h 2 ∈ K and 0 ≤ x ≤ + ∞ be given. The following estimations hold: 

a) 

∫ x 

0 

∣∣∣∣∣∣∣∣
exp 

(
−2 

∫ η
0 

ξ

1 + δ1 h (ξ ) 
dξ

)
1 + δ1 h (η) 

−
exp 

(
−2 

∫ η
0 

ξ

1 + δ2 h (ξ ) 
dξ

)
1 + δ2 h (η) 

∣∣∣∣∣∣∣∣
dη ≤

√ 

π

4 
(1 + δ0 ) 

1 / 2 (3 + δ0 ) | δ1 − δ2 | 

b) 

∣∣∣∣ 1 

C h 1 ,δ1 

− 1 

C h 2 ,δ2 

∣∣∣∣ ≤
√ 

π

4 
(1 + δ0 ) 

1 / 2 (3 + δ0 ) ( δ0 || h 1 − h 2 || ∞ 

+ | δ1 − δ2 | ) . 

Proof. 

a) Let f be the real function defined on R 

+ 
0 

by f (x ) = exp (−2 x ) , and 

x 1 = 

∫ η

0 

ξ

1 + δ1 h (ξ ) 
dξ , x 2 = 

∫ η

0 

ξ

1 + δ2 h (ξ ) 
dξ (η > 0 fixed ) . 

It follows from the Mean Value Theorem applied to function f that 

| f (x 1 ) − f (x 2 ) | = | f ′ (u ) || x 1 − x 2 | , 
where u is a real number between x 1 and x 2 . Without any lost of generality, we assume that δ1 ≥ δ2 . Then, x 1 ≤ x 2 and

we find 

| f ′ (u ) | ≤ | f ′ (x 1 ) | ≤ 2 exp 

(
− η2 

1 + δ0 

)
since || h || ∞ 

≤ 1 , 

| x 1 − x 2 | ≤ η2 

2 

| δ1 − δ2 | . 
Therefore, 

| f (x 1 ) − f (x 2 ) | ≤ | δ1 − δ2 | η2 exp 

(
− η2 

1 + δ0 

)
. 

Then, we find ∣∣∣∣ f (x 1 ) 

1 + δ1 h (η) 
− f (x 2 ) 

1 + δ2 h (η) 

∣∣∣∣ = 

∣∣∣∣ f (x 1 ) − f (x 2 ) 

1 + δ1 h (η) 
+ 

f (x 2 ) h (η)(δ2 − δ1 ) 

(1 + δ1 h (η))(1 + δ2 h (η)) 

∣∣∣∣
≤ | f (x 1 ) − f (x 2 ) | + | f (x 2 ) || δ1 − δ2 | 

≤ | δ1 − δ2 | exp 

(
− η2 

1 + δ0 

)
(η2 + 1) . 

The final bound is now obtained by integrating the last expression. 



612 A.N. Ceretani et al. / Applied Mathematics and Computation 337 (2018) 607–617 

 

i

i

 

 

b) First, we find the estimation ∣∣∣∣ 1 

C δ1 ,h 1 

− 1 

C δ2 ,h 2 

∣∣∣∣ ≤
∣∣∣∣ 1 

C δ1 ,h 1 

− 1 

C δ1 ,h 2 

∣∣∣∣
+ 

∣∣∣∣∣∣∣∣
∫ + ∞ 

0 

exp 

(
−2 

∫ η

0 

ξ

1 + δ1 h 2 (ξ ) 
dξ

)
1 + δ1 h 2 (η) 

−
exp 

(
−2 

∫ η

0 

ξ

1 + δ2 h 2 (ξ ) 
dξ

)
1 + δ2 h 2 (η) 

dη

∣∣∣∣∣∣∣∣
. (19) 

Taking into consideration that the first term in the right hand side of (19) is bounded by 
√ 

π
4 δ0 (1 + δ0 ) 

1 / 2 (3 + δ0 ) || h 1 −
h 2 || ∞ 

(see [10, Lemma 2.1] ), the desired bound follows from (19) and item a). �
Theorem 3.2. Problem (3) is Lipschitz continuous on the parameter δ. 

Proof. Let δ1 , δ2 ∈ [0, δ0 ) be given, and let �δ1 
, �δ2 

∈ K be the solutions to problem (3) with parameters δ1 , δ2 , respectively.

Exploiting the fact that �δi 
is the fixed point of the operator τδi 

defined by (16) , i = 1 , 2 , we find 

| �δ1 
(x ) − �δ2 

(x ) | ≤
∣∣∣C δ1 , �δ1 

− C δ2 , �δ2 

∣∣∣ ∫ ∞ 

0 

H(�δ2 
, δ2 )(η) dη

+ C δ1 , �δ1 

∣∣∣∣
∫ x 

0 

H(�δ1 
, δ1 )(η) − H(�δ2 

, δ1 )(η) dη

∣∣∣∣
+ C δ1 , �δ1 

∣∣∣∣
∫ x 

0 

H(�δ2 
, δ1 )(η) − H(�δ2 

, δ2 )(η) dη

∣∣∣∣ ∀ x > 0 , (20) 

where we have written 

H(h, δ)(x ) = 

exp 

(
−2 

∫ x 

0 

ξ

1 + δh (ξ ) 
dξ

)
1 + δh (x ) 

x > 0 , 

with h = �δi 
, δ = δ j , i, j = 1 , 2 . 

From the estimations 

i) C δ1 , �δ1 
≤ 2 ( 1+ δ0 ) √ 

π

ii) 

∣∣∣C δ1 , �δ1 
− C δ2 , �δ2 

∣∣∣ = 

∣∣∣∣ 1 
C δ1 , �δ1 

− 1 
C δ2 , �δ2 

∣∣∣∣C δ1 , �δ1 
C δ2 , �δ2 

≤ 1 √ 

π
(1 + δ0 ) 

5 / 2 (3 + δ0 ) 
(
δ0 || �δ1 

− �δ2 
|| ∞ 

+ | δ1 − δ2 | 
)

(see Lemma 3.1 ) 

ii) 
∣∣∫ x 

0 H(�δ1 
, δ1 )(η) − H(�δ2 

, δ1 )(η) dη
∣∣ ≤

√ 

π

4 
δ0 (1 + δ0 ) 

1 / 2 (3 + δ0 ) || �δ1 
− �δ2 

|| ∞ 

(see [10, Lemma 2.1] ) 

v) 
∣∣∫ x 

0 H(�δ2 
, δ1 )(η) − H(�δ2 

, δ2 )(η) dη
∣∣ ≤

√ 

π
4 (1 + δ0 ) 

1 / 2 (3 + δ0 ) | δ1 − δ2 | 
(see Lemma 3.1 ), 

and (20) , we obtain ∣∣�δ1 
(x ) − �δ2 

(x ) 
∣∣ ≤ C|| �δ1 

− �δ2 
|| ∞ 

+ 

C 

δ0 

| δ1 − δ2 | ∀ x > 0 , (21) 

where C = δ0 (1 + δ0 ) 
3 / 2 (3 + δ0 ) . 

Since δ0 is the solution to Eq. (4) , we find 

C = 

2 

1 + (1 + δ0 ) 3 / 2 
. 

Thus, 0 < C < 1. From this and (21) , we obtain 

|| �δ1 
− �δ2 

|| ∞ 

≤ L | δ1 − δ2 | with L = 

C 

δ0 (1 − C) 
> 0 . 

�

In conclusion, we have found that the approximation of zero order �δ,0 is the classical error function. Furthermore,

for those values of δ for which existence and uniqueness of the modified error function �δ is known, we found that �δ

uniformly converges to �δ, 0 = erf on x > 0. In particular, the latter suggest that �δ � �δ, 0 = erf for small positive values of

δ, in agreement to Fig. 1 . 
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Fig. 2. First three coefficients of the power series representation of the modified error function �δ (see (5) ). 

 

 

 

 

 

 

 

 

 

4. Approximations of order one and two 

The approximations of order one and two are given by 

�δ, 1 = ϕ 0 + ϕ 1 δ and �δ, 1 = ϕ 0 + ϕ 1 δ + ϕ 2 δ
2 , 

respectively, where ϕ0 is the solution to problem (11) and ϕ 1 , ϕ 2 are the solutions to problem (12) for n = 1 and n = 2 . From

Section 3 , we know that ϕ 0 = erf . It enables us to define the source term in the differential equation of problem (12) for

n = 1 . This problem can be explicitly solved and, from its solution, it can be also defined and solved problem (12) for n = 2 .

We summarize these results in the following 

Theorem 4.1. 

a) The only solution ϕ1 to problem (12) for n = 1 is given by 

ϕ 1 (x ) = 

(
1 
2 

− 1 
π

)
erf (x ) + 

1 
π

{
1 − exp (−2 x 2 ) 

}
− 1 √ 

π
x erf (x ) exp (−x 2 ) − 1 

2 
erf 

2 
(x ) x > 0 . 

(22)

b) The only solution ϕ2 to problem (12) for n = 2 is given by 

ϕ 2 (x ) = 

√ 

π

2 

g 2 (x ) 

[∫ x 

0 

erfc (y ) exp (y 2 ) dy −
√ 

π

2 

erfc (x ) erfi(x ) 

]
x > 0 , (23)

where g 2 , erfc , erfi are the real functions defined in R 

+ by 

g 2 (x ) = 

16 

π
erf (x ) exp (−2 x 2 ) + 

4 

π

(
2 

π
− 1 

)
exp (−2 x 2 ) 

− 12 

π
√ 

π
x exp (−3 x 2 ) + 

(
4 √ 

π
− 8 

π
√ 

π

)
x erf (x ) exp (−x 2 ) 

− 12 √ 

π
x erf 

2 
(x ) exp (−x 2 ) + 

4 

π
√ 

π
x exp (−x 2 ) 

− 8 

π
x 2 erf (x ) exp (−2 x 2 ) + 

4 √ 

π
x 3 erf 

2 
(x ) exp (−x 2 ) 

erfc (x ) = 1 − erf (x ) 

erfi(x ) = −i erf (ix ) = 

2 √ 

π

∫ x 

0 

exp (ξ 2 ) dξ ( i : imaginary unit) . 

Proof. It follows from standard results in ordinary differential equations (see, e.g. [33] ). �

Plots for ϕn , n = 0 , 1 , 2 , are shown in Fig. 2 . 

We will now investigate the relation between the approximations �δ,1 , �δ,2 , and the modified error function �δ . The

analysis will be again limited to those values of δ for which it is known the existence and uniqueness of �δ , i.e. to

0 < δ < δ0 � 0.2037 [10] . In contrast to the analysis presented in Section 3 , investigations here will be based on numerical

computations. 

Numerical values for �δ were obtained by solving problem (3) through the routine bvodeS implemented in Scilab. The

problem was solved for the domain [0,10], by considering a uniform mesh P with step size 10 −2 . 
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Fig. 3. Comparisons between the modified error function �δ and its approximations �δ, m for m = 0 , 1 , 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let E δ,m 

be the discrete error between �δ and �δ, m 

, defined by 

E δ,m 

= max { | �δ,m 

(x ) − �δ(x ) | : x ∈ P} for m = 0 , 1 , 2 . (25)

Fig. 3 a shows some plots of E δ,m 

for m = 0 , 1 , 2 and δ ∈ [0, 0.2] ⊂ [0, δ0 ). On one hand, we find that �δ,1 and �δ,2 are

better approximations of �δ than �δ,0 . On the other hand, we also find that �δ,1 is better than �δ,2 . This, together with the

fact that �δ,1 admits an explicit representation in terms of error and exponential functions only (in contrast to �δ,2 , which

involves some integrals that can not be explicitly computed), turns �δ,1 the best approximation among those proposed in

this article. Fig. 3 b shows the comparison between the �δ,1 and the modified error function �δ , for δ = 0 . 2 . Though we

are not able to find a complete explanation of why �δ,1 approximates better �δ than �δ,2 , we suggest that the numerical

implementation of the integrals in the definition of ϕ2 might be introducing non-negligible perturbations. Finally, in Fig. 4

we present plots for the modified error function �δ and the approximation of first order �δ,1 for different values of δ > −1 .

Even when they do not belong to the interval [0, δ0 ) over which theoretical results on existence and uniqueness of �δ are

known, very good agreement is obtained. This enforces the former conclusions of being �δ,1 the best approximation of �δ ,

among �δ, m 

for m = 0 , 1 , 2 . 

5. Properties of the modified error function 

We end this article by proving that the modified error function �δ found in [10] shares some basic properties with the

classical error function erf . More precisely, those of being an increasing concave non-negative and bounded function. 

Theorem 5.1. If 0 < δ < δ0 , then the only solution �δ in K to problem (3) satisfies the following properties: 

0 ≤ �δ(x ) ≤ 1 , �′ 
δ(x ) > 0 , �′′ 

δ (x ) < 0 ∀ x > 0 . (26)

Proof. The first property in (26) is a direct consequence of the fact that �δ belongs to K . In order to prove the second one,

we start by showing that �′ 
δ
(x ) � = 0 for all x > 0. We will assume that there exists x 0 > 0 such that �′ 

δ
(x 0 ) = 0 and we will

reach a contradiction. Since Eq. (3) can be written as 

(1 + δy (x )) y ′′ (x ) + δ(y ′ (x )) 2 + 2 xy ′ (x ) = 0 x > 0 (27)

and we know that 

1 + δ�δ(x 0 ) > 0 , (28) 

we find that �′′ 
δ
(x 0 ) = 0 . From this, by differentiating (27) and taking (28) into consideration, it follows that �′′′ 

δ
(x 0 ) = 0 .

We continue in this fashion obtaining that �(n ) 
δ

(x 0 ) = 0 for all n ∈ N . This implies that �δ ≡ 0 in R 

+ 
0 
, since �δ is an analytic

function. But the latter contradicts that �δ(+ ∞ ) = 1 . Therefore, �′ 
δ
(x ) � = 0 for all x > 0. This implies that the function �′ 

δ
does not change its sign in R 

+ 
0 

. Since �δ(0) ≤ 1 and �δ(+ ∞ ) = 1 , it follows that �′ 
δ
(x ) > 0 for all x > 0. Finally, the last

property in (26) follows straightforward from the previous ones and the fact that �′′ 
δ

is given by 

�′′ 
δ (x ) = −δ(�′ 

δ
(x )) 2 + 2 x �′ 

δ
(x ) 

1 + δ�δ(x ) 
x > 0 . (29) 

�

Remark 3. Note that Fig. 4 a suggest that the assumption δ > 0 can not be removed from the statement of Theorem 5.1 since
the two last properties in (26) seem to fail. 
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Fig. 4. Modified error function �δ and its approximation of first order �δ,1 for δ = −0 . 9 , −0 . 5 , 0.5, 1, 1.5, 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions 

In this article, we have proposed a method to obtain approximations of the modified error function �δ introduced by

Cho and Sunderland in 1974 [13] as part of a Stefan problem with variable thermal conductivity. This is defined as the solu-

tion to a nonlinear boundary value problem for a second order ordinary differential equation which depends on a parameter

δ > −1 . By assuming that �δ admits a power series representation in δ, we proposed some approximations �δ, m 

given as

the partial sums of the first m terms. It was presented three of them: the zeroth order approximation �δ, 0 = erf ; the first

order approximation �δ,1 , which can be written in terms of error and exponential functions only; and the second order

approximation �δ,2 , which can be written in terms of the error and exponential functions, and some integrals of combina-

tions of them. Analysis of errors between the approximations and the original function was performed by considering only

those values of δ for which existence and uniqueness of the modified error function is known, i.e. to small positive values

of the parameter δ. When m = 0 it was found that �δ uniformly converges to �δ,0 . This suggest that �δ � �δ,0 for small

values of δ. When m = 1 , 2 , numerical investigations suggest that �δ,1 and �δ,2 are also accurate approximations for �δ . In

particular, it was obtained that �δ,1 and �δ,2 are better approximations than �δ,0 , and that �δ,1 is better than �δ,2 . This,

together with the simple expression of �δ,1 in terms of the error and exponential functions only, turns the first order ap-

proximation the best one among those presented here. The fact that �δ,1 seems to be a better approximation than �δ,2 can
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not be completely addressed by the authors. Nevertheless, we suggest that the numerical implementation of the integrals in

the definition of the second order approximation might be introducing non-negligible perturbations. Comparisons between

�δ,1 and �δ were also presented for values of δ > −1 . Good agreement was obtained, even for those values of δ which do

not belong to the theoretical interval determined by the existence and uniqueness results of �δ . Finally, we proved that the

modified error function is an increasing non-negative concave function which is bounded by 1, as the classical error function

is, provided δ assumes small positive values. Results presented here can be used to obtain explicit approximate solutions to

Stefan problems for phase-change processes with linearly temperature-dependent thermal conductivity. This investigation 

suggest that the proof of existence and uniqueness of �δ for −1 < δ < 0 and evaluation of integrals involving exp-, erf-,

erfc-functions are still an open problem in the mathematical analysis of Stefan problems. 
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