

Universidad Nacional del Comahue Centro Regional Universitario Bariloche

ESTUDIO DE LOS FORAMINÍFEROS DEL HOLOCENO EN BAHÍA SAMBOROMBÓN, PROVINCIA DE BUENOS AIRES: IMPLICANCIAS PALEOECOLÓGICAS, PALEOAMBIENTALES Y PALEOCLIMÁTICAS

Bióloga. Angélica María Ballesteros Prada

Directora: Dra. Emiliana Bernasconi Codirectora: Dra. Isabel Vilanova

> Trabajo de Tesis para optar al Título de Doctor en Biología Bióloga Angélica María Ballesteros Prada

> > 2022

PREFACIO

"La vida sólo se manifiesta en seres organizados y cada uno de ellos tiene el valor de una unidad autónoma que adquiere el estatus de individuo. Esta individualidad no implica complejidad estructural y se manifiesta independientemente del tamaño y del nivel de organización del ser (Grasse, 1982). Los protozoos, grupo al que pertenecen los foraminíferos (Filum Chromista), se caracterizan por tener la estructura de una célula típica, pero se diferencian de ella por la individualidad y la relación de las operaciones vitales, que normalmente, son efectuadas en los animales por sistemas más complejos" (Acosta Herrera, 2004).

En este sentido, a los foraminíferos se les podría considerar organismos inferiores, sin embargo éste no es un concepto apropiado teniendo en cuenta su conformación estructural y su capacidad de generar conchillas de gran simetría y complejidad (Loeblich y Tappan, 1992).

Estos microorganismos tienen gran relevancia en las reconstrucciones ambientales debido a que son excelentes indicadores de las condiciones del medio en el que habitan. En efecto, el análisis de las asociaciones de foraminíferos permite interpretar el efecto de las variaciones climáticas, como las fluctuaciones del nivel del mar y su influencia en los ecosistemas marinomarginales tanto actuales como del pasado.

En el presente trabajo de Tesis Doctoral se muestran los resultados y conclusiones de la investigación basada en el análisis de los foraminíferos holocenos y actuales de ambientes de marisma y planicies de marea provenientes de Bahía Samborombón. A partir de este estudio se amplía el conocimiento de la distribución y la ecología de los foraminíferos bentónicos actuales y holocenos del NE costero de la provincia de Buenos Aires. Además, se aporta nueva información con mayor resolución espacio-temporal de los cambios ambientales que ocurrieron durante el Holoceno, en la zona central de Bahía Samborombón (~35,6 °S).

Este trabajo se divide principalmente en tres partes. En la primera, se analizan las variables ambientales que afectan la distribución y abundancia de los foraminíferos bentónicos actuales de la zona litoral de la bahía. En la segunda, se contribuye con la interpretación paleoambiental del Holoceno del sector central de la bahía. Y finalmente, en una tercera parte se presenta una revisión sistemática de las especies.

RESUMEN

En este trabajo se presentan los resultados de los análisis cuantitativos y cualitativos, realizados en base al estudio de la fauna de foraminíferos bentónicos provenientes de sedimentos actuales y holocenos de la Bahía Samborombón, Provincia de Buenos Aires, Argentina.

Se analizaron las asociaciones de foraminíferos actuales de cuatro sectores de la bahía, abarcando diferentes ambientes de la zona litoral. A partir de los resultados de los foraminíferos actuales se pudo determinar que la conductividad es uno de los factores que más influyó en la distribución y abundancia de los foraminíferos bentónicos. Sin embargo, los individuos también respondieron a la elevación de los ambientes de marismas y llanura de marea, pudiéndose caracterizar diferentes asociaciones para cada uno de los ambientes.

A su vez, se analizó la distribución de los foraminíferos holocenos provenientes de dos secuencias sedimentarias (PM2 y PS) localizados en la zona central de Bahía Samborombón, específicamente uno de ellos ubicado sobre el margen derecho del río Salado y el otro sobre el margen derecho del Canal 15. Organizadas en una transecta perpendicular al margen costero. En general, a partir de los resultados micropaleontológicos se realizó una interpretación paleoambiental con mayor resolución espacio-temporal en la zona central de Bahía Samborombón (~35,6° S) para el Holoceno medio.

El primer perfil (PM2), localizado a 12,5 km del margen costero, posee un rango cronológico entre 6803 - 6641 y 5489 - 5117 años cal. AP., cuyo contenido sedimentario y de microfósiles corresponde a un ambiente marino-marginal, sugiriendo condiciones de baja salinidad (marinas no normales). Específicamente, se observó una primera etapa con sedimentos depositados a partir de ca. 6803-6286 años cal. AP., caracterizada por un ambiente salobre de baja salinidad y bajas concentraciones de oxígeno. Posteriormente, se reconocieron condiciones marinas someras que estarían relacionadas a un aumento del nivel del mar, entre los ca. 6803 – 6286 años cal AP y los 6458-5884 años cal. AP. Seguidamente, se detectó una transición a condiciones salobres similares a un ambiente de marisma que podría vincularse al evento regresivo hacia los 5489- 5117 años cal. AP. Estos cambios paleoambientales serían consistentes con el aumento del Nivel Relativo del Mar (RSL) durante el Holoceno medio, y su posterior evento regresivo.

El segundo perfil (PS), localizado a 34,4 km del margen costero, posee un rango cronológico entre 6261 - 5919 cal. AP. y 1725 – 1511 años cal. AP. (PS). El análisis micropaleontológico refleja un ambiente de llanura de marea estuarina con influencia marina relacionado con el máximo transgresivo, el cual evolucionó a un ambiente con mayor influencia continental, donde las condiciones estuarinas decrecen en relación al descenso del nivel del mar y la progradación de la costa.

Ambos ambientes determinados poseen una correlación cronológica y su evolución paleoambiental estuvo relacionada con la ingresión de agua marina en el máximo transgresivo. Sin embargo, se observaron diferencias en los ambientes depositacionales, los cuales sugieren que dicha transgresión no fue uniforme en la zona central de la bahía, sino que estuvo condicionada a las variaciones geomorfológicas de la zona en el período involucrado.

A partir de los resultados, se brinda nueva información sobre la fauna de foraminíferos actuales y fósiles en sus aspectos sistemáticos, tafonómicos, y sus implicancias (paleo)ecológicas y (paleo)ambientales, fundamentalmente relacionadas con los cambios del nivel del mar. Asimismo, los foraminíferos actuales fueron utilizados como análogos modernos que se aplicaron en la interpretación del registro fósil. De esta forma, se amplía el conocimiento de las asociaciones de foraminíferos actuales y fósiles de un ambiente de marisma como Bahía Samborombón contribuyendo a la reconstrucción paleoambiental de la zona de estudio.

ABSTRACT

This research presents the results of the quantitative and qualitative analysis of the benthic foraminiferal fauna of current and holocene sediments from Samborombón Bay, Buenos Aires Province, Argentina.

The current foraminifera associations of 4 sectors of the bay were analyzed, covering different environments of the littoral zone. From the results of the current foraminifera it was determined that salinity is one of the factors that most influenced the distribution and abundance of benthic foraminifera. However, individuals also responded to the elevation of the marsh and tidal flat environments, and different associations could be characterized for each environment.

In turn, the distribution of Holocene foraminifera from two sedimentary sequences (PM2 and PS) located in the central zone of Bahía Samborombón was analyzed, specifically one of them located on the right bank of the Salado River and the other on the right margin of channel 15, in a transect perpendicular to coastal margin. In general, based on the micropaleontological results, a paleoenvironmental interpretation with greater spatio-temporal resolution was made in the central zone of Bahía Samborombón (~35.6° S) for the middle Holocene.

The first profile (PM2), located near the coastal zone, has a chronological range between 6803 - 6641 and 5489 - 5117 years cal. BP. whose sedimentary and microfossil content corresponds to a marine-marginal environment, suggesting low salinity conditions (non-normal marine). These paleoenvironmental changes would be consistent with the increase of the Relative Sea Level (RSL) during the middle Holocene, and its subsequent regressive event. A first stage was observed with sediments deposited from ca. 6803-6286 years cal. AP. characterized by a brackish environment of low salinity and low oxygen concentrations. Subsequently, shallow marine conditions were recognized that would be related to a rise in sea level, between ca. 6803 - 6286 years cal BP and 6458-5884 years cal. BP. Later, a transition to brackish conditions similar to a marsh environment was detected, which could be linked to the regressive event around 5489- 5117 years cal. BP.

The second profile (PS), distal to the coast, has a chronological range between 6261 - 5919 cal BP and 1725 - 1511-1409 cal BP (PS). The micropaleontological analysis reflects a tidal plain environment with marine or estuarine influence related to the transgressive maximum,

which evolved to an environment with greater continental influence, where the estuarine conditions decrease in relation to the decrease of the sea level and the progradation of the coast.

Both environments have a chronological correlation and their paleoenvironmental evolution was related to the ingression of seawater in the maximum transgression, however, differences in the depositional environments were observed, which suggest that this transgression was not uniform in the central area of the bay, but was conditioned to the geomorphological variations of the area in the period involved.

From the results, new information is provided on the present and fossil foraminiferal fauna in its systematic and taphonomic aspects, and its (paleo)ecological and (paleo)environmental implications mainly related to sea level changes. Likewise, current foraminifera were used as modern analogues that were applied in the interpretation of the fossil record. In this way, the knowledge of the present and fossil foraminifera associations of a marsh environment such as Bahía Samborombón is extended, contributing to the paleoenvironmental reconstruction of the study area.

CONTENIDO

PREFACIOii
RESUMEN iii
ABSTRACT v
CONTENIDO
INTRODUCCIÓN
OBJETIVOS
Objetivo general
Objetivos específicos3
CAPÍTULO 1. FORAMINÍFEROS: CONCEPTOS GENERALES
1.1 Nivel celular5
1.2 La conchilla
1.3 Ecología de los foraminíferos bentónicos11
1.3.1 Factores bióticos11
1.3.2 Factores abióticos12
1.4 Estudios (paleo)ecologicos y (paleo)ambientales
CAPÍTULO 2. ÁREA DE ESTUDIO
CAPÍTULO 2. ÁREA DE ESTUDIO
1.4 Estudios (paleo)ecologicos y (paleo)ambientales
1.4 Estudios (paleo)ecologicos y (paleo)ambientales 14 CAPÍTULO 2. ÁREA DE ESTUDIO 16 2.1 Zona Estuarina de la Bahía Samborombón 18 2.1.1 Oceanografía 18 2.1.2 Ambientes actuales, geomorfología 20
1.4 Estudios (paleo)ecologicos y (paleo)ambientales 14 CAPÍTULO 2. ÁREA DE ESTUDIO 16 2.1 Zona Estuarina de la Bahía Samborombón 18 2.1.1 Oceanografía 18 2.1.2 Ambientes actuales, geomorfología 20 2.1.3 Hidrografía 23
1.4 Estudios (paleo)ecologicos y (paleo)ambientales 14 CAPÍTULO 2. ÁREA DE ESTUDIO 16 2.1 Zona Estuarina de la Bahía Samborombón 18 2.1.1 Oceanografía 18 2.1.2 Ambientes actuales, geomorfología 20 2.1.3 Hidrografía 23 2.2 Características geológicas 24
1.4 Estudios (paleo)ecologicos y (paleo)ambientales 14 CAPÍTULO 2. ÁREA DE ESTUDIO 16 2.1 Zona Estuarina de la Bahía Samborombón 18 2.1.1 Oceanografía 18 2.1.2 Ambientes actuales, geomorfología 20 2.1.3 Hidrografía 23 2.2 Características geológicas 24 2.2.1 Formación Canal de Las Escobas (MIS 1) 24
1.4 Estudios (paleo)ecologicos y (paleo)ambientales 14 CAPÍTULO 2. ÁREA DE ESTUDIO 16 2.1 Zona Estuarina de la Bahía Samborombón 18 2.1.1 Oceanografía 18 2.1.2 Ambientes actuales, geomorfología 20 2.1.3 Hidrografía 23 2.2 Características geológicas 24 2.2.1 Formación Canal de Las Escobas (MIS 1) 24 2.2.2 Evolución geológica – geomorfológica 27
1.4 Estudios (paleo)ecologicos y (paleo)ambientales 14 CAPÍTULO 2. ÁREA DE ESTUDIO 16 2.1 Zona Estuarina de la Bahía Samborombón 18 2.1.1 Oceanografía 18 2.1.2 Ambientes actuales, geomorfología 20 2.1.3 Hidrografía 23 2.2 Características geológicas 24 2.2.1 Formación Canal de Las Escobas (MIS 1) 24 2.2.2 Evolución geológica – geomorfológica 27 CAPÍTULO 3. MATERIALES Y MÉTODOS 28
1.4 Estudios (paleo)ecologicos y (paleo)ambientales 14 CAPÍTULO 2. ÁREA DE ESTUDIO 16 2.1 Zona Estuarina de la Bahía Samborombón 18 2.1.1 Oceanografía 18 2.1.2 Ambientes actuales, geomorfología 20 2.1.3 Hidrografía 23 2.2 Características geológicas 24 2.2.1 Formación Canal de Las Escobas (MIS 1) 24 2.2.2 Evolución geológica – geomorfológica 27 CAPÍTULO 3. MATERIALES Y MÉTODOS 28 3.1 Trabajo de campo / toma de muestras 28
1.4 Estudios (paleo)ecologicos y (paleo)ambientales 14 CAPÍTULO 2. ÁREA DE ESTUDIO 16 2.1 Zona Estuarina de la Bahía Samborombón 18 2.1.1 Oceanografía 18 2.1.2 Ambientes actuales, geomorfología 20 2.1.3 Hidrografía 23 2.2 Características geológicas 24 2.2.1 Formación Canal de Las Escobas (MIS 1) 24 2.2.2 Evolución geológica – geomorfológica 27 CAPÍTULO 3. MATERIALES Y MÉTODOS 28 3.1 Trabajo de campo / toma de muestras 28 3.1.1 Muestras superficiales 30
1.4 Estudios (paleo)ecologicos y (paleo)ambientales 14 CAPÍTULO 2. ÁREA DE ESTUDIO 16 2.1 Zona Estuarina de la Bahía Samborombón 18 2.1.1 Oceanografía 18 2.1.2 Ambientes actuales, geomorfología 20 2.1.3 Hidrografía 23 2.2 Características geológicas 24 2.2.1 Formación Canal de Las Escobas (MIS 1) 24 2.2.2 Evolución geológica – geomorfológica 27 CAPÍTULO 3. MATERIALES Y MÉTODOS 28 3.1 Trabajo de campo / toma de muestras 28 3.1.1 Muestras superficiales 30 3.1.2 Perfiles holocenos 31

3.2.1 Procesamiento de las muestras	32
3.2.2 Tamaño de grano	32
3.2.3 Análisis geoquímicos	32
3.2.4 Distancia a la costa y valores de elevación	34
3.3 Extracción e identificación de los foraminíferos	34
3.4 Análisis tafonómico	34
3.5 Análisis de diversidad y abundancia	36
3.6 Relaciónentre individuos epifaunales e infaunales	39
3.7 Índice de Kaiho (BFOI)	39
3.8 Índice Ammonia-Elphidium (IAE)	41
3.9 Elaboración de mapas	41
3.10 Análisis estadísticos	42
3.10.1 Coeficiente de correlación de Spearman	42
3.10.2 Análisis de Componentes Principales	42
3.10.3 Análisis de escalamiento multidimensional no métrico (nMDS)	42
3.10.4 Análisis de correspondencia canónica (ACC)	43
3.10.5 Análisis de los perfiles holocenos	43
3.11 Edad de los sedimentos	43
CAPÍTULO 4. FORAMINÍFEROS ACTUALES Y VARIABLES AMBIENTALES DE LA BAHÍA SAMBOROMBÓN	45
4.1. Antecedentes	45
4.2 Resultados	47
4.2.1 Variables ambientales	47
4.2.2 Análisis de foraminíferos	56
4.3 Discusión	69
4.3.1 Descripción de los sub-ambientes en Bahía Samborombón	69
4.3.2 Foraminíferos actuales de la Bahía Samborombón	72

4.3.3 Índices de diversidad	78
4.3.4 Análisis tafonómico	80
4.3.3 Foraminíferos y variables ambientales	81
4.4 Conclusiones particulares del capitulo	84
CAPÍTULO 5. FORAMINÍFEROS HOLOCENOS DE BAHÍA SAMBOROMBÓN 5.1. Antecedentes	85 85
5.2 Resultados	88
5.2.1 Perfil PM2	88
5.2.2 Perfil Salado (PS)	94
5.2.3 Comparación entre fauna fósil y actual	
5.3 Discusión	
5.3.1 Foraminíferos holocenos de la Bahía Samborombón	
5.3.2 Interpretación paleoambiental del perfil PM2	
5.3.3 Interpretación del ambiente PS	113
5.3.4 Síntesis de la evolución paleoambiental en la zona central de bahía Sam	iborombón
durante el Holoceno	118
5.3.5 Síntesis regional de la evolución paleoambiental durante el Holoceno	121
5.4 Conclusiones particulares del capítulo	122
CAPÍTULO 6. CONCLUSIONES Y CONSIDERACIONES FINALES	
6.1 Conclusiones generales	
6.2 Investigaciones a futuro	126
Anexo I. Clasificación Sistemática	127
Arenoparrella mexicana	
Ammonia parkinsoniana (d'Orbigny, 1839	
Bolivina translucens	131
Anexo II. Mapas	145
Anexo III. Correlación Spearman	156

Páginaix | 194

Financiamiento e Instituciones que contribuyeron a la realización de esta Tesis de Doctorado	177
Trabajos publicados con referato en revistas especializadasdurante la realización del doctorado	177
Publicaciones relacionadas con el tema de tesis	177
Capítulo de libro	177
Presentación a congresos nacionales e internacionales	178
Cursos de posgrado y perfeccionamiento durante el doctorado	179
Cursos de extención durante el periodo del doctorado	180

FIGURAS

Figura 1.1. Diagrama de la estructura celular de un foraminífero unicelular **(A)**; Ciclo de vida (modificados de Armstrong y Brasier, 2005) **(B)** y estructura externa de la conchilla de un foraminífero multilocular (Modificado de Acosta y Herrera, 2004) **(C)**.

Figura 1.2. Representación de los microhábitats de los foraminíferos bentónicos en sedimentos marinos (Modificado de Koho y Piña-Ochoa, 2012).

Figura 1.3. Distribución de las asociaciones de foraminíferos bentónicos según diferentes ambientes (Armstrong y Brasier, 2005).

Figura 1.4. Modelo TROX, donde se muestran las interacciones entre el alimento, el oxígeno y el tipo de hábitat presente dentro del sedimento (modificado de Van der Zwann et al., 1999).

Figura 2.1. Ubicación general del área de estudio (A). Delimitación de los tres ecosistemas principales en la costa litoral bonaerense. El nº 1 hace referencia al ecosistema continental, el nº 2 al ecosistema estuarino y el nº 3 al marino costero (Modificado de Lasta y Jaureguizar, 2006) (B). Localización de las diferentes áreas protegidas alrededor de la Bahía Samborombón, y los diferentes canales y ríos (C).

Figura 2.2. Temperaturas y salinidades superficiales (a) y de fondo en la Bahía Samborombón (b) (Tomada de Guerrero et al., 1997).

Figura 2.3. Mapa Geológico del sector continental de la parte centro - Norte de Bahía Samborombón, La transencta A-B indica la zona media de la bahía y el curso del Canal 15 (Tomado de Fucks et al. 2010).

Figura 3.1. Ubicación geográfica de las muestras. Los puntos verdes indican la ubicación de los perfiles (muestras holocenas) y los puntos morados la localización de las muestras superficiales (muestras actuales).

Figura 4.1. Ubicación geográfica de las muestras actuales en las cuatro zonas analizadas de Norte a Sur: R36 (Ruta 36) (A), RS (Río Salado) (B), C15 (Canal 15) (C) y (D.) y PR (Punta Rasa) (E). Los puntos amarillos representan las muestras en las que se pudo analizar la fauna de foraminíferos. Los puntos rojos representan las muestras en las que no se pudo analizar la fauna de foraminíferos.

Figura 4.2. Valores de distancia a la costa (Km), elevación (m), temperatura del agua (°C), conductividad del agua (μsm) y pH del agua en las muestras superficiales.

Figura 4.3. Valores de distancia a la costa (km), elevación (m), arena (%), lodo (%), materia orgánica (%), fósforo total (μg/g d.w), nitrógeno total (%) y carbono total (%).

Figura 4.4. Diagrama bidimensional del análisis de componentes principales (ACP) basado en los valores de temperatura (TEMP), Conductividad (COND), porcentaje de lodos (LOD), Elevación (ELE), distancia a la costa (DIS) y pH (pH), analizados para las cuatro áreas de estudio.

Figura 4.5. Diagrama bidimensional del análisis de componentes principales (ACP) donde se relaciona los sitios muestreados y las variables ambientales, fósforo total (PT), nitrógeno total (NT), carbono total (CT) y materia orgánica. (MO).

Figura 4.6. 1 Grupo tafonómico A: conchillas bien preservadas, o como máximo a las que les falta la última cámara; 2 y 3 Grupo tafonómico B: conchillas "negras" con relleno de pirita framboidal; 4 y 5 Grupo tafonómico C: conchillas rotas o fragmentadas; 6 Grupo tafonómico D: conchillas pulidas o con signos de abrasión o retrabajo; 7,8 u 9 Conchilla amorfas.

Figura 4.7 Distancia a la costa (km), elevación (m), abundancia (ind/g), foraminíferos vivos (%), foraminíferos amorfos (%), tipo de conchilla (aglutinado: gris, porcelanáceos: azul, hialino: amarillo), hábitat (epifaunal: gris, infaunal; azul). Grupos tafonómicos: Gris, (A) Bien preservados. Azul, (B) retrabajados. (C) Fragmentado. (D) Color oscuro o con signos de piritización.

Figura 4.8. Distancia a la costa (km), elevación (m), riqueza de especies (S), dominancia de Simpson, índices de Shannon-Wiener (H) y alfa de Fisher (α), BFOI (índice óxico de foraminíferos béntónicos) y IAE (índice de *Ammonia-Elphidium*).

Figura 4.9. Distancia a la costa (km), elevación (m), abundancia de foraminíferos bentónicos con abundancia mayor al 2 por ciento en más de dos muestras en muestras superficiales Troc oc: Trochammina ochracea, Troc inf: Trochammina inflata, Quin sem: Quinqueloculina seminulum, Quin pat: Quinqueloculina patagónica, Quin mil: Quinqueloculina milletti, Mil fus: Miliammina fusca, jad pol: Jadammina polystoma, Elp dis: Elphidium discoidale, Crib poe: Cribroelphidium poeyanum, Crb gun: Cribroelphidium gunteri, Crib ex: Cribroelphidium excavatum, Buc per: Buccella peruviana Astr: Astrononion sp., Are Mex: Arenoparrella mexicana, Am Te: Ammonia tepida Am par: Ammonia parkinsoniana.

Figura 4.10. Diagrama bidimensional obtenido a partir del análisis nMDS, donde se observa la distribución de las especies (A) y los sitios (B). Los círculos hacen referencia a los grupos determinados.

Figura 4.11. Diagrama bidimensional obtenido a partir del análisis nMDS. Se muestran los sitios agrupados por sub ambientes propuestos: PL: playa CD: canal de marea, MA: marisma alta, MM: marisma media, MB: marisma baja, IN: intermareal, CA: canal y PR: pradera.

Figura 4.12. Diagrama obtenido a partir del Análisis de Correspondencia Canónica (ACC). Se grafican las especies, sitios de muestreo y variables ambientales en Bahía Samborombón.

Figura 5.1. Curvas del nivel relativo del mar (RSL) de los modelos Loess y Gamma. La edad se expresa en miles de años AP. La banda gris representa el rango del máximo nivel del mar inferido por palinomorfos y diatomeas (Prieto et al, 2017). I: inferior, M: medio, S: Superior, msdm: metros sobre el nivel del mar.

Figura 5.2. Esquema del Perfil M2, sus respectivas edades radiocarbónicas calibradas y la localización del perfil analizado (Triángulo).

Figura 5.3. Abundancia, riqueza de especies (S), tipo de pared (hialino, porcelanáceo y aglutinado), índices de Shannon-Wiener (H) y alfa de Fisher (α); Grupos tafonómicos: (A) bien preservados. (B) retrabajados. (C) fragmentado. (D) color oscuro o con signos de piritización. Distribución de valores de proporción de infaunales, BFOI (índice óxico de foraminíferos béntónicos) y IAE (índice de *Ammonia-Elphidium*).

Figura 5.4 Distribución de las especies con >2 % en al menos un nivel y análisis de conglomerados mostrando las zonas reconocidas.

Figura 5.5. Esquema del Perfil Salado, sus respectivas edades radiocarbónicas calibradas y la localización del perfil analizado (Círculo azul).

Figura 5.6. Abundancia, riqueza de especies (S), tipo de pared (hialino, porcelanáceo y aglutinado), índices de Shannon-Wiener (H) y alfa de Fisher (α); grupos tafonómicos: (A) bien conservados. (B) retrabajados. (C) fragmentado. (D) Color oscuro o con signos de piritización. Distribución de valores de proporción de infaunales, BFOI (índice óxico de foraminíferos bénticos) y IAE (índice de*Ammonia-Elphidium*).

Figura 5.7. Distribución de las especies con abundancia >2% en al menos una muestra y análisis de conglomerados mostrando las zonas reconocidas.

Figura 5.8. Diagrama bidimensional obtenido a partir del análisis nMDS, donde se observa la distribución de las especies y los sitios. Los puntos grises hacen referencia a los puntos de muestreo. Figura 5.9. Reconstrucción paleoambiental en base a los foraminíferos bentónicos presentes en el perfil PM2.

Figura 5.10 Reconstrucción paleoambiental en base a los foraminíferos bentónicos presentes en el perfil PS.

Figura 5.11. Gráfico mostrando la relación vertical y horizontal de las facies identificadas en las distintas secuencias sedimentarias.

Lámina A. Foraminíferos Bentónicos Aglutinados

Lámina B. Foraminíferos Bentónicos Hialinos de los géneros (Cibicides-Cibicidoides-Buliminella-Bulimina-Buccella).

Lámina C. Foraminíferos Bentónicos Hialinos (*Buccella-Discorbis-Poroeponides-Discorvinella-Astrononion-Nonionella-Ammonia*).

Lámina D. Foraminíferos Bentónicos Hialinos (Buccella-Rotorbinella-Haynesina-Cribroelphidium).

Lámina E. Foraminiferos Bentóicos (Elphidium-Bolivina-Miliammina-Quinqueloculina-Fissurina).

Anexo II.1. Temperatura (°C) para cada una de las muestras. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo II.2. Conductividad del agua (µsm) para cada una de las muestras. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo II. 3. pH del agua para cada una de las muestras. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo II. 4. Nitrógeno total en el sedimento (%NT) para cada una de las muestras. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15).

Anexo II. 5. Valores de fósforo total (µg/g d.w). A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15).

Anexo II. 6. Porcentaje de Materia Orgánica (%MO). A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15).

Anexo II. 7. Porcentaje de Carbono total (%CO). A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15).

Anexo II. 8. Abundancia (foraminíferos por un gramo de sedimento) en cada punto de muestreo. Los gráficos de tortas muestran el porcentaje de los tipos de conchilla. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo II. 9. Valor del índice alfa de Fisher en cada punto de muestreo. El gráfico de tortas muestra los géneros más representados en cada muestra. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR). Se graficó en un diagrama de torta el porcentaje que representa cada uno de los géneros en cada muestra, mostrándose en las etiquetas los 16 géneros con mayor abundancia.

Anexo II. 10. Valor del índice Shannon-Wiener en cada punto de muestreo. El gráfico de tortas muestra las especies más representativas en cada muestra. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo II. 11. Valor del índice *Ammonia-Elphidium* (IAE) en cada punto de muestreo. Los gráficos de tortas representan el tipo de hábitat epifaunal e infaunal. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo III.1. Gráfico de correlación de Spearman con histogramas, funciones de densidad, líneas de regresión suavizadas y coeficientes de correlación con los niveles de significación (si no hay estrellas, la variable no es estadísticamente significativa, mientras que una, dos y tres estrellas significan que la correspondiente variable es estadísticamente significativa para los niveles 10%, 5% y 1%, respectivamente). DIS: distancia a la costa; ELE: elevación, LOD: Lodos, ARE: Arena, COND: conductividad, pH: pH, TEM: Temperatura, PT: fósforo total, NT: nitrógeno total, CT: carbono total, MO: materia orgánica, CO: carbono orgánico.

Anexo III.2. Gráfico de correlación de Spearman con histogramas, funciones de densidad, líneas de regresión suavizadas y coeficientes de correlación con los niveles de significación (si no hay estrellas, la variable no es estadísticamente significativa, mientras que una, dos y tres estrellas significan que la correspondiente variable es estadísticamente significativa para los niveles 10%, 5% y 1%, respectivamente). DIS: distancia a la costa; ELE: elevación, LOD: Lodos, ARE: Arena, COND: conductividad, pH: pH, TEM: Temperatura, PT: fósforo total, NT: nitrógeno total, CT: carbono total, MO: materia orgánica, CO: carbono orgánico y grupos tafonómicos (A, B, C y D).

Anexo III.3. Gráfico de correlación de Spearman con histogramas, funciones de densidad, líneas de regresión suavizadas y coeficientes de correlación con los niveles de significación (si no hay estrellas, la variable no es estadísticamente significativa, mientras que una, dos y tres estrellas significan que la correspondiente variable es estadísticamente significativa para los niveles 10%, 5% y 1%, respectivamente). DI: distancia a la costa; EL: elevación, LOD: Lodos, ARE: Arena, CON: conductividad, pH: pH, TEM: Temperatura, PT: fósforo total, NT: nitrógeno total, CT: carbono total, MO: materia orgánica, IND: Indiviuos/g de sedimento, AG: aglutinado, PO: porcelanáceo, HI: hialino, EP: epifaunales, IN: infaunales, BFOI, S: Riqueza de especies, DOM: Dominancia, H: índice de Shannon, índice de Fisher, IAE, AMO: indivios amorfos, V: individuos vivos.

Tabla 3.1. Localización geográfica de todas las muestras tanto superficiales como los dos perfiles analizados en este trabajo.

Tabla 4.1. Localización geográfica, distancia a la costa, elevación, granulometría, conductividad, pH, temperatura, fósforo total (PT), nitrógeno total (NT), carbono total (CT), materia orgánica (MO). Las muestras en las cuales se realizó análisis de foraminíferos se indicado con (X) y en las que no se realizó dicho análisis se dejó el espacio en blanco.

Tabla 4.2. Coeficientes de correlación de Spearman, en azul se muestran las correlaciones positivas y en rojo se indican las correlaciones negativas.

Tabla 4.3 Coeficientes de correlación de Spearman, en azul se muestran las correlaciones positivas y en rojo las correlaciones negativas. fósforo total (PT), nitrógeno total (NT), carbono total (CT) y materia orgánica. (MO).

Tabla 4.4. Abundancia de foraminíferos más representados (abundancia ind/g > 2 % de la asociación total en más de dos muestras), las especies más abundantes están subrayadas en gris. Tipo de conchillas (aglutinado, porcelanáceos, Hialinos), microhábitat (infaunal, epifaunal), diversidad (Riqueza de especies, Índice de Shannon, Alfa de Fisher), tafonomía: (Grupo A) bien preservados, Grupo B) con coloración negra o marrón, Grupo C) fragmentados, Grupo D) retrabajados.) foraminíferos vivos, foraminíferos amorfos, BFOI: Índice de Kaiho, IAE: índice Ammonia / Elphidum.

Tabla 4.5 Distribución de las muestras en los diferentes ambientes presentes en la Bahía Samborombón.

Tabla 5.1. Interpretaciones estratigráficas del área de estudio según diversos autores (modificado de Laprida, 1997).

Tabla 5.2. Abundancia de foraminíferos más representados (abundancia >2% de la asociación total en más de dos muestras) e índices de diversidad para el perfil PM2. Las especies están organizadas de las más las abundantes a las menos representadas. El índice de Fisher fue calculado para muestras con una abundancia mayor o igual a 100 ind/g. Tabla 5.3. Abundancia de los foraminíferos más representados (abundancia >2% de la asociación total en más de dos muestras) e índices de diversidad para el perfil PS. Las especies están organizadas de las más abundantes a las menos representadas. El índice de Fisher fue calculado para muestras con una abundancia mayor o igual a 100 ind/g.

Tabla 5.4. Especies exclusivas y compartidas entre los perfiles y las muestras superficiales.

INTRODUCCIÓN

Los foraminíferos son organismos unicelulares capaces de generar conchillas de diversos materiales como carbonato de calcio, sílice, o bien aglutinar partículas del medio. Dichas conchillas le sirven de protección contra el estrés físico, químico y biológico permitiéndole, en algunos casos, conservarse en el registro fósil. Este grupo de microorganismos está ampliamente distribuido tanto a escala temporal (desde el Cámbrico hasta el presente) como a escala espacial. Los mismos habitan desde ambientes marino-marginales como estuarios, lagunas y marismas hasta ambientes marinos de plataforma, oceánicos, batiales y abisales (Murray, 1991, 2006). Asimismo, representan gran parte de la densidad de la meiofauna de los mares y los océanos (Cornelius y Gooday, 2004; Escobar et al., 1997; Gooday, 1986; Smith, 1992; Snider et al., 1984). En ambientes marino-marginales y de planicie de marea, si bien la abundancia de foraminíferos bentónicos en relación a la composición de la comunidad microfaunal es baja, se ha observado que contribuyen significativamente en la composición y estructura de las comunidades, como en la caracterización de los ambientes (Hack et al., 2007; Harguinteguy et al., 2012).

Los patrones de distribución y abundancia de los foraminíferos bentónicos son afectados por una compleja combinación de parámetros ecológicos, fisicoquímicos y sedimentológicos como la salinidad, el oxígeno disuelto, los nutrientes disponibles, la temperatura, la profundidad, y el tipo de sustrato, entre otros (Benito et al., 2016; Bernasconi et al., 2018; Murray, 1991, 2006; Strachan et al., 2016). En este contexto, comprender esta interrelación provee evidencias confiables para la interpretación de los cambios en las condiciones ambientales. Por ello, estos microorganismos son una herramienta muy utilizada en estudios (paleo)ecológicos, (paleo)ambientales y (paleo)climáticos como las fluctuaciones del nivel del mar.

En efecto, diferentes investigaciones indican que existe una fuerte correlación entre la distribución de las especies de foraminíferos bentónicos y la zona o elevación de los ambientes de marismas (Benito et al., 2016; Calvo-Marcilese y Pratolongo, 2009; Edwards y Horton, 2000; Hayward et al., 2010; Hayward y Grenfell, 1999; Horton et al., 1999; Southall et al., 2006; Strachan et al., 2015, 2016), por lo cual, dicha relación es empleada en muchos casos en la reconstrucción de

los niveles del mar pasados usando el conjunto de sub-fósiles contenidos en los sedimentos de las zonas costeras o litorales (Calvo-Marcilese et al., 2013; Edwards y Horton, 2000; Hayward et al., 2010).

Por otro lado, el área de estudio, Bahía Samborombón, es el humedal mixohalino más extenso de la República Argentina (Volpedo et al., 2005) dado que posee una extensión de alrededor de 244 000 ha, de las cuales, más del 65% pertenecen a ecosistemas terrestres y el resto a sistemas acuáticos que se extienden a lo largo de 150 km sobre la costa occidental del estuario del Río de la Plata, desde Punta Piedras (35° 27´S; 56° 45´O) hasta Punta Rasa (36° 22´S; 56° 35´O). Abarca en su extensión, una franja terrestre variable de 2 a 23 km de ancho y una porción de aguas someras hasta la isobata de 3,5 m (Volpedo et al., 2005). Éste es un sector de gran interés para las reconstrucciones paleoambientales y paleoclimáticas del Cuaternario dado que su evolución estuvo vinculada con las variaciones del nivel del mar y los cambios climáticos acaecidos particularmente durante el Holoceno entre 11 650 y 7 000 años calibrados antes de 1950, período en el que el nivel del mar ascendió cerca de 60 m a escala global (Smith et al., 2011) y 4 m a escala regional(Prieto et al., 2017), especialmente en la zona del Río de la Plata y en cercanías del área argentina y uruguaya. Este incremento del nivel del mar está asociado a un rápido aumento de temperatura y extensas variaciones ambientales (Smith et al., 2011, Prieto et al., 2017).

Teniendo en cuenta lo expuesto anteriormente, este trabajo tiene como objetivo ampliar el conocimiento de la distribución del phylum Foraminifera tanto de sedimentos actuales como de perfiles holocenos procedentes del sector litoral y central de Bahía Samborombón respectivamente. Asimismo, contribuir a la reconstrucción paleoambiental y paleoclimática, de la bahía mediante el uso de los foraminíferos como bio-indicadores.

OBJETIVOS

Objetivo general

Ampliar el conocimiento de la distribución del phylum Foraminifera de la Plataforma Continental Argentina, en particular de los foraminíferos actuales y de perfiles holocenos de Bahía Samborombón. A su vez, contribuir a la reconstrucción paleoambiental del área de la bahía a partir del máximo transgresivo del Holoceno en relación con las fluctuaciones del nivel del mar y las variaciones climáticas mediante el uso de foraminíferos como bio-indicadores.

Objetivos específicos

-Estudiar la diversidad y abundancia de los foraminíferos fósiles procedentes de 2 perfiles holocenos localizadas en Bahía Samborombón, específicamente en el Canal 15 y el Río Salado; ambas ubicadas entre la costa y el interior de la Bahía Samborombón; así como también, estudiar la diversidad y abundancia de foraminíferos actuales contenidos en sedimentos superficiales extraídos de la zona costera de la bahía.

-Analizar la relación entre los factores ecológicos y las asociaciones de foraminíferos actuales para utilizarlos como análogos modernos en interpretaciones paleoecológicas y paleoambientales de Bahía Samborombón. -Determinar diferentes parámetros ecológicos como los niveles de oxigenación y la salinidad en base a la clasificación específica y los morfogrupos de los foraminíferos según el caso.

-Integrar la nueva información con la brindada por otros indicadores, como por ejemplo, polen y moluscos, con el fin de lograr una mayor resolución en la reconstrucción paleoambiental del área de estudio fundamentalmente las relacionadas con las variaciones del nivel del mar.

CAPÍTULO 1. FORAMINÍFEROS: CONCEPTOS GENERALES

Por sus características morfológicas y fisiológicas, los foraminíferos se incluyen dentro del gran grupo de los protozoos. Son organismos "sencillos" casi exclusivamente marinos que poseen la estructura de una célula típica, con la capacidad adicional de realizar todas las operaciones vitales que normalmente son efectuadas por órganos y sistemas en los animales más complejos (Acosta-Herrera, 2004). Su estudio se enfoca inicialmente en el análisis de sus conchillas, siendo de gran interés para los geólogos debido a que en algunos casos se preservan en el registro fósil (Murray, 2006).

1.1 Nivel celular

Los foraminíferos son organismos unicelulares eucariotas cuyo citoplasma granulorreticuloso está compuesto por pseudópodos de citoplasma granular ramificados, que forman una red de reticulopodios. Su tamaño celular puede variar desde unos micrómetros a varios centímetros como es el caso de *Marginopora vertebralis* (Murray, 2006).

En su estructura celular o cuerpo blando citoplasmático se pueden diferenciar dos partes (fig. 1.1a) el **endoplasma** y el **ectoplasma**; entre los cuales hay un intercambio constante de organelos más pequeños (Travis y Bowser, 1988). El **endoplasma** o también llamado cuerpo citoplasmático, intrathalamous citoplasmático o "sarcode", se encuentra dentro de la conchilla y almacena principalmente organelos (como por ejemplo el núcleo, los ribosomas, el aparato de Golgi, etc.) responsables del funcionamiento celular (Lee y Anderson, 1991). El **ectoplasma** también llamado reticulopodia está formado por numerosos filamentos, funcionalmente independientes que le permiten la circulación. En ellos, se llevan a cabo procesos de respiración, movimiento y/o fijación, alimentación, construcción de la conchilla y reproducción (Travis y Bowser, 1991).

El ciclo de vida y la reproducción de la gran mayoría de foraminíferos bentónicos (Fig. 1.1b) se caracteriza por la alternancia de generaciones, una haploide uninucleada producida asexualmente por medio de mitosis (gamonte) y otra diploide multinucleada producida sexualmente por la unión de diferentes gametos (agamonte). Algunos casos presentan ciclos asexuales sucesivos como en el caso de *Ammonia tepida* (Murray, 2006). Las conchillas adultas pueden ser morfológicamente idénticas o muy diferentes. En el caso de la generación gamonte comúnmente tienen un prolóculo relativamente grande y se denominan megalosféricas, mientras que las que son producto de la generación sexual o agamontes poseen un prolóculo pequeño denominadas formas microsféricas (Hohenegger, 2018; Murray, 2006). Estos procesos reproductivos varían entre las diferentes especies y comúnmente están condicionados por factores ambientales.

El crecimiento a nivel celular consiste principalmente en el aumento del citoplasma y de los organelos a través del tiempo y se encuentra afectado por las condiciones ambientales como la disponibilidad de alimento, los factores bióticos como la depredación y la competencia, y los factores abióticos como la variación en los parámetros físicos-químicos del medio (Hohenegger, 2018). El crecimiento de la conchilla es variado y depende de la forma (unilocular o multilocular) y la composición de la pared (aglutinados o calcáreos). Se considera que los foraminíferos más primitivos uniloculares crecen agregando material intercalado en sus paredes, o abandonan la conchilla y generan una más grande (Armstrong y Brasier, 2005). Los foraminíferos menos primitivos, uniloculares, superaron este crecimiento contenido añadiendo un tubo final con crecimiento continuo. El crecimiento de las conchillas multiloculares es periódico, a medida que va creciendo se va agregando una cámara nueva más grande (Acosta Herrera, 2004; Armstrong y Brasier, 2005).

La alimentación y la circulación están delimitadas por los pseudópodos debido a que tienen la tarea de capturar e ingresar el alimento a través de las corrientes citoplasmáticas. La digestión puede tener lugar en los reticulopodios, en la masa citoplasmática alrededor de la abertura o dentro del citoplasma del cuerpo celular (Murray, 2006). A los foraminíferos se les atribuye diferentes estrategias de alimentación, pueden ser consumidores de materia orgánica; herbívoros, carnívoros, omnívoros activos y pasivos, consumidores de partículas en suspensión y cazadores que se alimentan de detritos y bacterias (Murray, 2006).

Figura 1.1.

Diagrama de la estructura celular de un foraminífero unicelular **(A)**; Ciclo de vida (modificados de Armstrong y Brasier, 2005) **(B)** y estructura externa de la conchilla de un foraminífero multilocular (Modificado de Acosta y Herrera, 2004) **(C)**.

Los foraminíferos adoptan principalmente dos modos de vida (fig.1.2). Los individuos **epifaunales** que viven sobre superficies suaves (sedimentos finos) o firmes (rocas y plantas) (Murray, 2006). Estos presentan conchillas redondeadas, plano convexas o biconvexas con enrollamiento trocoespiral y grandes poros que pueden estar ausentes o restringidos a un lado de la conchilla (Corliss y Chen, 1988). Por otro lado, los individuos **infaunales** viven dentro del sedimento generalmente a un 1 cm de profundidad. En algunos casos, se han encontrado foraminíferos vivos 60 cm por debajo de la superficie del sedimento en ambientes de marisma (Goldstein et al., 1995) pero en la mayoría de los ambientes viven a pocos centímetros de la interfase agua sedimento (Murray, 2006). Los individuos infaunales poseen conchillas generalmente redondeadas planoespirales, cilíndricas globulares u ovaladas, ovoides aplanadas, con enrollamiento uniserial, triserial o planiespiral con poros presentes en toda la superficie de la

conchilla (Corliss y Chen, 1988). Esta variedad de formas de los foraminíferos bentónicos está relacionada con su preferencia de microhábitat (Corliss y Chen, 1988).

Uno de los factores que definen el microhábitat es el contenido de oxígeno disuelto en la interfase agua-sedimento (Alve y Bernhard, 1995). Por lo tanto, cuando los niveles de oxígeno se convierten en un factor limitante, las formas epifaunales son las primeras afectadas y su abundancia disminuye (Corliss, 1985; Smart, 2002). Estos bajos niveles de oxígeno en la superficie de los sedimentos con frecuencia se asocian con una alta productividad, causada por la oxidación de la materia orgánica (Corliss y Chen, 1988).

Figura 1.2. Representación de los microhábitats de los foraminíferos bentónicos en sedimentos marinos (Modificado de Koho y Piña-Ochoa, 2012).

En referencia al hábitat (Fig. 1.3), los foraminíferos bentónicos tienen una amplia distribución, pueden habitar desde ambientes marino-marginales como estuarios, marismas, lagunas marinas, ambientes de plataforma, hasta ambientes oceánicos profundos, siendo generalmente más abundantes y diversos en el ambiente de plataforma (Armstrong y Brasier, 2005).

La densidad y composición de las asociaciones de foraminíferos bentónicos muestran variaciones con respecto a un gradiente batimétrico en zonas costa afuera (Hayward et al., 2003; Mojtahid et al., 2010), o un gradiente de distancia a la costa o el nivel de marea en zonas costa adentro (Hayward and Grenfell, 1999). No obstante, la profundidad, la distancia a la costa o el nivel de marea por si solas no son las causantes de dicha variación, si no variables asociadas a estas como el flujo de nutrientes, la disponibilidad de oxígeno, la salinidad, entre otros.

En rasgos generales los ambientes marino marginales como estuarios, marismas o lagunas marinas se caracterizan por presentar asociaciones de foraminíferos poco diversas. En el caso de ambientes de baja salinidad como marismas, dominan organismos de conchillas aglutinadas e hialinas tolerantes a condiciones hiposalinas. En ambientes hipersalinos como lagunas hipersalinas, predominan las asociaciones compuestas por foraminíferos porcelánaceos y algunos hialinos (Armstrong and Brasier, 2005; Murray, 2006). La plataforma posee características ambientales que favorecen el desarrollo de foraminíferos bentónicos, esta zona es la más diversa. La distribución de las especies están controladas por factores como la temperatura, la salinidad, el nivel de energía, la vegetación, entre otros (Murray, 2006). La asociación de foraminíferos bentónicos en la zona batial, generalmente está compuesta por organismos hialinos, porcelanáceos y aglutinados. La distribución y abundancia en esta zona se relaciona con el flujo de nutrientes oxígeno al fondo marino (Murray, 2006).

La zona abisal está a profundidades mayores de los 4000 m superando la profundidad de compensación de carbonatos, por lo tanto, la fauna es principalmente de pared orgánicas o aglutinada (Murray, 2006).

Figura 1.3. Distribución de las asociaciones de foraminíferos bentónicos según diferentes ambientes (Armstrong y Brasier, 2005).

1.2 La conchilla

La conchilla es la estructura externa de los foraminíferos, su tamaño no supera el milímetro, excepto en algunas especies como *Neusina agassizy* (190 mm), *Protobotellina cylindrica* (120 mm), *Nummulites gizehensisn* (110 mm) y *Lepidocyclina gigas* (120 mm), (Boltovskoy, 1965). Esta estructura mantiene al citoplasma protegido dentro de sí mismo reduciendo el estrés biológico, químico y físico que puede generar el medio en el que habitan, a su vez ayuda en la flotabilidad negativa y posee diversas modificaciones que mejoran tanto la adherencia como la flotabilidad en los foraminíferos planctónicos (Armstrong y Brasier, 2005). Asimismo, generan resistencia ante el aplastamiento y ayudan a canalizar el flujo ectoplasmático desde el interior al exterior y viceversa (Armstrong y Brasier, 2005).

La conchilla tiene una estructura morfológica (Fig. 1.1C) donde la unidad básica es la cámara y su contorno recibe el nombre de **periferia**; la pared que separa una cámara de otra es el **septo** y su reflejo externo recibe el nombre de **sutura**. La **apertura** es el espacio, agujero o agujeros que comunica el interior con el exterior. Finalmente, la primera cámara que se forma recibe el nombre de **prolóculo**.

La estructura y la composición de la conchilla son componentes básicos en su clasificación sistemática. Diferentes autores crearon y modificaron sus sistemas de clasificación basados en los caracteres morfológicos de esta estructura debido a que en la mayoría de los casos era lo único que se preservaba. Uno de los caracteres diagnósticos en la clasificación de los foraminíferos es la composición de la pared de la conchilla, las cuales pueden diferenciarse en 5 clases según Armstrong y Brasier (2005): **1) Conchillas de pared orgánica**, **membranosa** o pseudoquitinosa, generalmente denominada tectina. Pueden tener incrustaciones ferruginosas o pequeñas cantidades de partículas aglutinadas, que, por lo general, son delgadas y no rígidas (individuos del orden Allogromiida). **2)** Conchillas aglutinadas compuestas de materia orgánica como fragmentos de cocolitos, espículas esponjosas o inorgánica compuestas generalmente de partículas sedimentarias, como, por ejemplo, minerales. Estos fragmentos están unidos por un cemento orgánico, calcáreo o de óxido ferroso. Estos granos se seleccionan comúnmente por tamaño, textura o composición, (Foraminíferos del orden Textulariida). **3) Conchillas formadas por calcita microgranular y homogénea**, en esta clase de conchilla los microgránulos pueden empaquetarse aleatoriamente o alinearse de manera normal

Página 10 | 194

a la superficie de la conchilla y entremezclarse con los poros, dando a la pared una apariencia fibrosa. Estas capas granulares y fibrosas de calcita microgranular frecuentemente se combinan en la estructura de una sola pared de varias capas (característico del orden Fusulinida). **4) Conchillas calcáreas porcelanáceas,** se componen principalmente de calcita y poseen una capa orgánica interna y pueden tener material agregado superficialmente. Son imperforadas en estados postembriónicos y carecen de poros en la pared, presentando un color blanco lechoso en luz reflejada y un color ámbar en la luz transmitida. Además, están construidas de pequeñas agujas de calcita y magnesio distribuidas aleatoriamente, aunque, las superficies externa e interna están recubiertas con una capa de cristales de calcita aciculares dispuestas horizontalmente (foraminíferos del orden Miliolida). **5) Conchillas calcáreas hialinas**, están compuestas de calcita o aragonita, siendo generalmente vítreas cuando se observan con luz reflejada y gris con luz transmitida, aunque el tamaño de la pared, el tamaño de las perforaciones, gránulos, espinas, pigmentos y diagénesis pueden oscurecer la conchilla. Este tipo de pared está presente en la mayoría de los foraminíferos tanto fósiles como actuales (la mayoría de los individuos del orden Rotaliida).

Además, el número, la forma y la distribución de las cámaras, las aperturas, ornamentaciones y otros caracteres morfológicos son importantes en la identificación taxonómica de las especies.

1.3 Ecología de los foraminíferos bentónicos

La distribución y abundancia de los foraminíferos bentónicos tienen una relación estrecha tanto con los factores bióticos como los factores abióticos, es decir, las características del medio influyen directa o indirectamente en la dinámica de poblaciones de los foraminíferos en diferentes ambientes.

1.3.1 Factores bióticos

Los foraminíferos constituyen un recurso importante en muchos ecosistemas marinos y oceánicos debido a su gran biomasa (Cornelius y Gooday, 2004; Escobar et al., 1997; Gooday, 1986;

Página 11 | 194

Smith, 1992; Snider et al., 1984), jugando a su vez un papel importante dentro de la red trófica. Diversos organismos ingieren a los foraminíferos directa o indirectamente, esto se muestra en varios estudios de contenidos intestinales de invertebrados y vertebrados como gusanos planos, poliquetos, gasterópodos, crustáceos, bivalvos, peces o pequeñas aves en los que se ha encontrado la presencia de conchillas de foraminíferos en su interior. A su vez, mantiene relaciones intraespecíficas de competencia e interespecíficas como simbiosis, parasitism y epibiosis (Acosta Herrera, 2004; Murray, 2006).

1.3.2 Factores abióticos

Diversos factores abióticos influyen en la distribución de los foraminíferos bentónicos, por ejemplo, salinidad, pH, temperatura, profundidad, tipo de sustrato, distribución de nutrientes y contenido de oxígeno disuelto, entre otros.

Salinidad. La mayoría de los foraminíferos están adaptados a salinidades marinas normales, por eso, en este tipo de ambientes, es donde ocurre la mayor diversidad de individuos. No obstante, existen especies que toleran amplios rangos de salinidad. En ambientes con valores bajos de salinidad, por ejemplo, en cenotes de México se reportó la presencia de *Jadammina macrescens* en salinidad de 2,9 ups (Van Hengstum et al., 2008). A su vez, en ambientes influenciados por fuentes de agua dulce como estuarios o marismas se ven favorecidas especies aglutinadas de los géneros *Jadammina, Arenoparrella* y *Trochammina* y algunas especies hialinas de los géneros *Ammonia, Elphidium* y/o *Cribroelphidium* (Benito et al., 2016; Calvo-Marcilese y Pratolongo, 2009; Edwards y Horton, 2000; Gildeeva et al., 2021; Hayward y Grenfell, 1999). Por el contrario, en ambientes hipersalinos como lagunas costeras, que en algunos casos superan los 40 ups y poseen altas concentraciones de carbonatos, predominan las especies porcelanáceas, dado que las conchillas no perforadas de los miliolidos estarían mejor adaptadas para proteger el endoplasma de los gradientes osmóticos del estrés por salinidad extrema (Debenay et al., 2001; Li et al., 2020).

pH. La acidez del agua es un factor limitante para la existencia de las asociaciones de foraminíferos. Generalmente, estos organismos toleran variaciones del pH entre 6,7 y 8,0. Las aguas muy ácidas producen la disolución de las conchillas calcáreas, por lo que la presencia de los microorganismos aglutinados tienden a prevalecer en los ambientes actuales y en el registro sedimentario (Pettit et al., 2013; Kawahata et al., 2019). Los foraminíferos son sensibles a la variación del pH. Se ha observado que el descenso en los valores de pH provoca una disminución en la abundancia de la comunidad y la riqueza de especies, también, influye en la reducción de las especies de tipo hialino y porcelanáceo en los ensambles y aumenta la probabilidad de deformaciones en la conchilla (Dong et al., 2020; Saraswat et al., 2015). No obstante, esta respuesta no es lineal, dado que más allá de un cierto límite, un aumento adicional del pH no estaría afectando a los foraminíferos bentónicos (Saraswat, 2015).

Sustrato. En el caso de los foraminíferos bentónicos, el sedimento o el sustrato al que se adhieren (por ejemplo, rocas) es muy importante en la distribución de las especies debido, en parte, a que el flujo de oxígeno y nutrientes está ligado a la permeabilidad del sustrato. Diferentes factores como la composición química, el tamaño de grano, entre otros, favorecen o no la presencia de algunas especies influyendo en la composición de las asociaciones en diferentes ecosistemas. Algunas investigaciones sostienen que el tamaño de grano del sustrato influye en la distribución de las especies. La densidad y riqueza de especies de foraminíferos bentónicos son bajas en sedimentos más gruesos (Armynot du Châtelet et al., 2009), y de igual forma, algunas especies muestran preferencias por sedimentos limosos y/o arcillosos, particularmente aquellas tolerantes a la contaminación (Magno et al., 2012).

Productividad, flujo de nutrientes y oxigenación. La disponibilidad de oxígeno y nutrientes en los sedimentos del fondo son considerados como uno de las principales factores que influyen en la distribución y abundancia de los foraminíferos bentónicos (Van der Zwaan et al., 1999) lo cual concuerda con el modelo el **modelo TROX** de Jorissen et al. (1995). Por otro lado, la morfología de las conchillas está directamente relacionada con el flujo de carbono orgánico en el fondo marino (Corliss y Chen, 1988). Basado en esta premisa, Jorissenet al. (1995) plantearon dicho modelo para explicar la abundancia de los taxones de foraminíferos bentónicos en relación con el aumento o

Página 13 | 194

disminución de la cantidad de oxígeno disuelto y la cantidad de nutrientes (Fig.1.4). Se menciona que en ambientes con pocos nutrientes y alto contenido de oxígeno (oligotróficos) hay poca abundancia de especies tanto epifaunales como infaunales someros (Van der Zwaan et al., 1999). En el otro extremo, en ambientes eutróficos la disponibilidad de la infauna etaria limitada por los niveles de oxígeno dado que exsistiría una super-abundancia de nutrientes. En ambientes mesotróficos, aumenta la abundancia de foraminíferos infaunales "profundos", infaunales "someros" y epifaunales mientras que, en ambientes eutróficos, los primeros que desaparecen son los individuos epifaunales y aumenta el predominio de los infaunales profundos. Las concentraciones de oxígeno están dadas por las categorías: óxico (\geq 1,2 ml/L), disóxico (1,2-0,1 ml/L) y anóxico (\leq 0,1 ml/L), (Betancur y Martínez, 2003).

Figura 1.4. Modelo TROX, donde se muestran las interacciones entre el alimento, el oxígeno y el tipo de hábitat presente dentro del sedimento (modificado de Van der Zwann et al., 1999).

1.4 Estudios (paleo)ecológicos y (paleo)ambientales

Los estudios ecológicos tienen como objetivo la comprensión de las relaciones entre los organismos y su medioambiente. Los resultados de estos análisis son muy utilizados en las reconstrucciones paleoambientales y paleoclimáticas. Está metodología se basa en la presunción de que *"el presente es la clave del pasado"*, afirmación que deriva de las leyes de *uniformismo* y *actualismo* atribuidas a los geólogos James Hutton y, más tarde, a Charles Lyell (Perea et al., 2018). El *uniformismo* hace referencia a que las leyes y procesos naturales han permanecido constantes a lo largo del tiempo geológico, contemplando la existencia de variaciones en el ritmo e intensidad

con que se han desarrollado los procesos geológicos en los distintos momentos de la historia de la tierra. En cuanto al *actualismo*, hace referencia a que los fenómenos que hoy están actuando han producido los mismos efectos en el pasado. Basado en estas dos ideas, se usa el estudio de los fenómenos actuales y sus efectos, como base para la interpretación del pasado y como predicción del futuro (Perea et al., 2018).

Se postula que la validez de esta presunción depende de la escala temporal, siendo mayormente útil para el Neógeno, y progresivamente de menor utilidad para momentos anteriores (Murray, 1991). Esto se fundamenta en dos razones: **1**) en que muchos de los grupos taxonómicos no existían o eran menos importantes en tiempos pre-Cenozoicos y **2**) en que algunos taxones parecían cambiar sus requerimientos ecológicos, aunque en realidad se debía a una expansión o contracción de su nicho (Murray, 1991).

Entonces, en general los datos ecológicos obtenidos de ambientes actuales pueden ser aplicados en interpretaciones paleoambientales siempre y cuando se contemplen estas diferencias. Las asociaciones de foraminíferos del Cuaternario contienen un alto porcentaje de especies existentes en el presente, haciendo posible realizar comparaciones directas en base a datos actuales de análogos modernos, usando métodos estadísticos adecuados como los análisis multivariados: agrupamiento, componentes principales, escalamiento multidimensional, entre otros (Murray, 2006).

CAPÍTULO 2. ÁREA DE ESTUDIO

La costa litoral atlántica argentina se extiende a lo largo de 4 725 km marinos y 392 km fluviales del Río de la Plata (Instituto Geográfico Nacional, 2018). La región costera y marina de la provincia de Buenos Aires posee más de 1 300 km y en ella se pueden diferenciar tres ecosistemas principales: continental, estuarino y marino costero (Lasta y Jaureguizar, 2006);(Fig. 2.1A).

El ecosistema continental es netamente dulceacuícola, cubre la parte interna y media del Río de la Plata, se caracteriza por la presencia de agua dulce o continental que proviene de la confluencia de los ríos Paraná y Uruguay en el Río de la Plata. Estas corrientes de agua presentan salinidades menores a 2 ups y cubren el Paraná de las Palmas y la parte Interior y Media del Río de la Plata, llegando hasta Punta Piedras, Partido de Punta Indio (Lasta y Jaureguizar, 2006).

El ecosistema estuarino es una región de mezcla o transición de aguas provenientes del Río de La Plata y del océano Atlántico con salinidades que van desde 2 a 27 ups, cubre el área entre Punta Piedras y Cabo San Antonio (Partido de Gral. Lavalle) incluyendo la Bahía Samborombón (Lasta y Jaureguizar, 2006).

El ecosistema marino costero se extiende a lo ancho, desde la costa hasta la isobata de 50 m, y a lo largo de la costa, desde cabo San Antonio hasta el sur de la Provincia de Buenos Aires, Partido de Carmen de Patagones (Lasta y Jaureguizar, 2006). El porcentaje de salinidad varía entre un máximo de 34,2 y un mínimo de 30 ups (Lucas et al., 2005).

La zona de estudio está localizada en Bahía Samborombón, que se ubica al noreste de la provincia de Buenos Aires entre Punta Piedras (35° 27´S; 56° 45´O) y Punta Rasa (36° 22´S; 56° 35´O), (Fig.2.1). La misma comprende un área de aproximadamente 243 965 ha, que se extiende a lo largo de 180 km sobre la costa occidental del Río de La Plata. La bahía abarca una franja terrestre variable

de 2 a 23 km de ancho y una porción de aguas someras hasta la isobata de 3,5 m (Fundación Vida Silvestre Argentina, 2013; Volpedo et al., 2005). Esta bahía es considerada uno de los estuarios más grandes de Argentina (Fundación Vida Silvestre Argentina, 2013) y en 1997 fue seleccionado como Sitio Ramsar abarcando áreas protegidas con diferentes categorías de protección, jurisdicciones y administraciones (Ramsar, 1997); (Fig. 2.1C).

Dentro de la bahía se pueden distinguir diferentes sectores como llanuras de inundación, marismas y llanuras pampeanas (Bértola et al., 1998). Asimismo, posee una zona de agua salobre, donde se mezclan las aguas del Río de La Plata y del océano Atlántico, lo que crea condiciones ecológicas únicas que representan el sustento de una gran biodiversidad.

Figura 2.1. Ubicación general del área de estudio (A). Delimitación de los tres ecosistemas principales en la costa litoral bonaerense. El nº 1 hace referencia al ecosistema continental, el nº 2 al ecosistema estuarino y el nº 3 al marino costero (Modificado de Lasta y Jaureguizar, 2006) (B). Localización de las diferentes áreas protegidas alrededor de la Bahía Samborombón, y los diferentes canales y ríos (C).

2.1 Zona Estuarina de la Bahía Samborombón

La zona estuarina de la bahía se caracteriza por la descarga de aguas del Río de la Plata en el océano Atlántico lo cual genera un sistema estuarino de aproximadamente 35 000 km², con una profundidad de agua que abarca entre 5 y 15 m (Guerrero et al., 1997). Presenta un sistema micromareal con amplitudes de mareas bajas, generalmente menores a 1 m. El régimen de marea es mixto, predominantemente semi-diurno, siendo la componente lunar semidiurna principal (M2) la más significativa (Proyecto FREPLATA, 2011). Las máximas velocidades de las corrientes de marea ocurren en los límites norte y sur de la Bahía Samborombón (Punta Piedras y Punta Rasa), mientras que en el interior sus valores son mucho menores (Proyecto FREPLATA, 2011).

2.1.1 Oceanografía

La **temperatura superficial** del agua en Bahía Samborombón (Fig. 2.2) muestra homogeneidad horizontal, con valores que varían entre 19 y 21 °C. Sobre la zona sur frente a Punta Rasa y Cabo San Antonio se reconoce un frente térmico resultado de una lengua de agua más cálida (20 a 21°C) proveniente del estuario en contraste con una intrusión costera de baja temperatura proveniente de la plataforma (16 a 18°C). La **temperatura de fondo** presenta valores menores que en superficie y oscilan entre 14 y 21°C. Se observa un núcleo cálido (T > 17°C) sobre el sector costero interno del litoral uruguayo y Punta Piedras (Argentina), definiendo un frente térmico de fondo; el resto del estuario mantiene una menor temperatura. Las diferencias de temperatura entre la temperatura de fondo y la temperatura superficial, sobre el sector sur, son mayores a 3 °C, indicando cierto grado de estratificación térmica (Guerrero et al., 1997).

Con respecto a la **salinidad superficial**, se definen dos áreas con máximos gradientes horizontales, una interna asociada a 15 ups y una más externa con valores que alcanzan los 22,5 ups (Bertola y Morosi, 1997). Ambos frentes se orientan en sentido N-S y se unen cuando interceptan las líneas de costa en ambos litorales. Sobre el sector argentino se observa una intrusión de agua de plataforma al norte de cabo San Antonio, lo cual se evidencia en la presencia de agua con alto contenido salino (entre 20 y 22,5 ups) en el sector sur de la bahía Samborombón. La isohalina de 17

Página 18 | 194

ups define para el estuario una lengua de agua dulce que indica una descarga del Río de la Plata con dirección sur. Esto coincide con la señal de temperatura en superficie donde también se observa una dominancia de agua típica del estuario hacia este sector. Al norte del estuario y centrado sobre Punta del Este se observa un núcleo aislado de agua diluida con salinidades menores a 25 ups (Guerrero et al., 1997).

Figura 2.2. Temperaturas y salinidades superficiales (a) y de fondo en la Bahía Samborombón (b) (Tomada de Guerrero et al., 1997).

En relación con la **salinidad de fondo** un 80% del área del estuario presenta salinidades mayores a 20 ups (Fig.2.2), en el que los máximos gradientes horizontales se registran en Punta Piedras (Entre 5 y 20 ups). A lo largo del canal marítimo (sector sur del estuario), se observa la penetración del agua de plataforma cuya salinidad supera los 22,5 ups, generando, en contraste con las condiciones de superficie, un sistema de dos capas bien definido. Las diferencias en la salinidad superficial y de fondo llegan hasta 10 ups (Guerrero et al., 1997).

Desde el punto de vista **climático**, Bahía Samborombón presenta un clima estacional mesotérmico, es decir que va desde moderadamente cálido a templado, siendo lluvioso y húmedo debido a la influencia marítima que decrece de este a oeste y al suroeste (Bertola y Morosi, 1997).

Página 19 | 194

La temperatura media anual y la precipitación son 16 °C y 950 mm, respectivamente. Durante el verano se presentan gran cantidad de eventos de precipitación los cuales están relacionados con la influencia del Sistema Monzónico Sudamericano (SAMS) y la celda semipermanente de alta presión del Atlántico Sur (Garreaud et al., 2009).

En el Río de La Plata, los principales forzantes que influyen sobre la circulación del agua son la descarga fluvial de sus tributarios, las ondas de mareas oceánicas (astronómica y meteorológica) y los vientos que soplan sobre la superficie del agua. Las variaciones en los parámetros físicos y químicos (especialmente la salinidad) afectan también a la circulación, ya que modifican la densidad del agua. El efecto de los forzantes sobre el agua está condicionado, a su vez, por la configuración de la línea de costa y la batimetría de fondo (Fossatia et al., 2015).

Esta bahía posee un sistema de vientos característicos que influye en la circulación del oleaje. Los vientos de mayor influencia son los del Sureste y del Este, concentrando la energía de las olas hacia el sector Norte (río Salado, río Samborombón y Punta Piedras). Hacia el sur del río Salado, se producen fenómenos de refracción de olas que favorecen la progradación (Bertola y Morosi, 1997). Los vientos procedentes del Sureste generan eventos de precipitación denominados "sudestada", que afectan significativamente a la región al empujar las aguas hacia el interior (Garreaud et al., 2009).

2.1.2 Ambientes actuales, geomorfología

Ambiente submareal. Corresponde al área entre los 10 m de profundidad hasta el nivel de bajamarea, esta zona se encuentra siempre sumergida. Se caracteriza por sedimentos finos y sedimentos pelíticos (limos y arcillas que constituye los lodos). Sus estructuras sedimentarias y características dinámicas del ambiente están influenciadas por las corrientes de marea y la fricción del viento (olas) (Bertola, 1994).

Ambiente intermareal o de planicies de marea. Las planicies de marea presentan una gradación granulométrica que abarca desde sedimentos arenosos hacia el mar, a sedimentos

Página 20 | 194

fangosos pelíticos hacia el continente, lo cual sugiere que la dinámica de cada sector es diferente. El ambiente intermareal se dividide en **intermareal bajo**, el cual se extiende desde el nivel de bajamar de sicigias hasta el nivel de pleamar de cuadraturas quedando diariamente sumergida y parcialmente expuesta. Y un **intermareal alto** que va desde ese nivel de pleamar de cuadraturas al nivel de pleamar de sicigias. Esta zona puede ser invadida por vegetación halófita como *Sporobolus* spp. indicando un avance de la marisma por sobre el ambiente intermareal alto(Bertola, 1994).

Ambiente supramareal o marismas saladas. Constituyen áreas formadas por la interacción del agua, el sedimento y la vegetación halófita principalmente. Estas se desarrollan en áreas de baja energía de olas como la desembocadura de ríos, bahías y/o lagunas costeras (Allen, 2000; Adam, 2002). Se ubican específicamente en la zona intermareal alta o en niveles topográficos más altos que las planicies de marea y se diferencia de ellos por la presencia de sustratos que permiten el desarrollo de vegetación halófita (Allen y Pye, 1992). Se puede subdividir en marismas alta, media y baja.

La zona baja (**marisma baja**) está sujeta a tres o cuatro inundaciones por mes y su extensión está acotada a los límites de la influencia del régimen de inundación de las mareas diarias. Los sedimentos son más finos que en la marisma alta y la vegetación, en general, está compuesta por más del 50% de *Sporobolus* spp.

La zona alta (**marisma alta**) es inundada irregularmente (no más de cuatro o cinco inundaciones por año) y su límite superior está condicionado al alcance de la inundación producida por las mareas altas extremas y sudestadas. La granulometría de este sector es mayor que la zona baja y la vegetación generalmente está compuesta en más del 50% por *Sarcocornia perennis* (Bértola, 1994; Cagnoni, 1999).

La **marisma media** es un lugar de transición entre la marisma alta y baja. El espectro palinológico representativo o indicador de esta zona es el que refleja principalmente las poblaciones puras de *Sarcocornia perennis* rodeadas por el espartillar de *S. densiflorus* (Luengo, 2019).

Los canales de marea constituyen una geoforma importante en el intercambio de agua salada desde el sistema estuárico al de llanura de mareas y marismas, produciendo se el intercambio en dos sentidos: el ingreso de agua salada por efectos de la marea en forma de manto y su egreso canalizado, y de agua de lluvia que cae sobre las planicies mareales y marismas, encausándose por los canales y desaguando en el mar (Bértola, 1994). Los canales de marea pueden alterar los patrones de zonación de la vegetación en las zonas supra e intermareales (Zedler et al., 1999).

Los ambientes intermareales, supramareales y submareales en Bahía Samborombón se vinculan genéticamente a través de un proceso de progradación costera, en donde ocurre la migración de los ambientes por encima de los que van quedando lejos de la costa actual, conforme esta progradó durante el Holoceno tardío. Es decir, la actual zona supramareal se desarrolla en zonas donde antiguamente existían ambientes intermareales y submareales (Bértola, 1994).

Punta Rasa se encuentra en la confluencia de dos ambientes: el estuarial hacia el Oeste y el oceánico hacia el Este. Posee una morfología totalmente distinta a la del resto de Bahía Samborombón. Aquí, la depositación de sedimentos y distribución de organismos están relacionadas mucho más con la interacción mar – bahía que en el resto de la bahía. La génesis y evolución de esta zona está ligada a la deriva litoral de arena (Sur-Norte), a corrientes costeras, a mareas y a la presencia del Río de la Plata cuyas interacciones hacen cementar arenas y evolucionar la espiga en sucesivas playas, paralelas entre sí y hacia el Noreste (Bertola, 1994; Bertola yMorosi, 1997).

La zona de Punta Rasa se comporta como un ambiente mixto, donde coexisten depósitos mareales al Este, integrados por un cordón medanoso costero muy degradado, una playa distal y una playa arenosa al Oeste, conformada por la presencia de planicies de marea, canales de marea y marismas (Bertola y Morosi, 1997).
2.1.3 Hidrografía

Desde el punto de vista hidrográfico, Bahía Samborombón se caracteriza por el curso de aguas tributarias de la cuenca del río Samborombón y del río Salado conjuntamente a los grandes canales y faldeo Norte del Sistema de Tandilia (30 000 km²) que abarcan las cuencas de los canales 9, 1 y 2 (Río Ajó), y la desembocadura de la ría de San Clemente (Lasta y Jaureguizar, 2006). La cuenca del río Samborombón corresponde a la Pampa Deprimida del Sur, una zona rural de escasa pendiente, con obras de canalización y drenaje ubicada a menos de 100 m sobre el nivel del mar. Allí, predominan las dunas en la zona centro-Oeste y se encuentran conectadas artificialmente con el arroyo Vallimanca a las lagunas Encadenadas del Oeste. Las Sierras de Tandil constan de una serie de arroyos que conducen el agua de escorrentía hacia la zona Deprimida del Salado, que está conformada por la deposición de sedimentos por acción eólica, fluvial y costera. Dentro de esta zona se puede identificar la llamada *Zona Costera*, que es la que se ubica entre la ruta 11 y la línea de costa, caracterizada por la presencia de una gran cantidad de canales aliviadores que encausan el agua presente a escala local hacia Bahía Samborombón (Lasta y Jaureguizar, 2006; Volpedo et al., 2005).

Un sistema micromareal se extiende desde el Río de La Plata hasta San Clemente del Tuyú, donde la marea presenta amplitudes bajas, generalmente menores a 1 m, con un régimen de marea mixto preponderantemente semidiurno (Servicio de Hidrografía Naval, 2021). Su rango micromareal y su escasa pendiente originan una dinámica de muy baja energía lo que crea las condiciones para que el viento y las olas modifiquen las propiedades y la dinámica de las aguas tanto como la distribución de sedimentos y las formas del fondo (Bertola y Morosi, 1997). Cuando sube la marea, debido a ese pequeño gradiente topográfico, cientos de metros se cubren con una fina capa de agua que sustenta la vida de organismos detritívoros y vegetación halófila (Bertola yMorosi, 1997; Carol et al., 2008). Por otro lado, los ríos y canales que cruzan la bahía se consideran sistemas hipertróficos. El drenaje superficial y la filtración del agua es a menudo una contribución importante de fósforo (P) a los cuerpos de agua que dependen del P presente en el suelo, la topografía, la cobertura vegetal, la intensidad del flujo, el uso de la tierra y la contaminación (Wetzel, 2001).

Además, las concentraciones de metales pesados y nutrientes responden a un gradiente latitudinal tanto en aguas altas como bajas (Schenone et al., 2007, 2008). Asimismo, la recarga de lluvia, las entradas de agua continental, la evaporación y los tiempos de resiliencia prolongados definen las características hidroquímicas e isotópicas del agua subterránea y superficial (Carol et al., 2013).

2.2 Características geológicas

2.2.1 Formación Canal de Las Escobas (MIS 1)

Gran parte de las geoformas y los depósitos sedimentarios presentes en el sector continental de Bahía Samborombón tienen su origen en las fluctuaciones del nivel del mar del Cuaternario, en particular las fases transgresivas - regresivas relacionadas con el MIS 1 (Fucks et al., 2010). Estos depósitos sedimentarios se han estudiado ampliamente desde el Siglo XIX siendo los primeros reportes de unidades marinas al noreste de la provincia de Buenos Aires los realizados por Tricart (1973) y Fidalgo et al. (1973). Este último, a partir de un análisis litoestratigráfico agrupó estos depósitos marinos en tres Formaciones (Fm) y los relacionó a diferentes ingresiones marinas. A las Fm. Pascua y Fm. Destacamento Río Salado las asociaron a ingresiones del Pleistoceno tardío, y a la Fm. Las Escobas la asociaron a ingresiones del Holoceno (Fidalgo et al., 1973). Posteriormente, se reinterpretó la Fm. Destacamento Río Salado y fue relacionada con la ingresión holocena (Fidalgo, 1979). Estudios recientes reinterpretaron estratigráficamente la propuesta de Fidalgo incluyendo por primera vez la región costera del Este bonaerense, sumando a la Bahía Samborombón.(Violante et al., 2001; Violante y Parker, 2004).

Más tarde, se realizó un estudio detallado, específicamente de la zona centralde Bahía Samborombón, en el que se incluyeron criterios sedimentológicos, paleoecológicos y su asociación con la evolución geomorfológica de la región (Fucks et al., 2010). Esta nueva organización estratigráfica agrupa en la Fm. Pascua los sedimentos depositados en la ingresión del Pleistoceno tardío (MIS 5e) y en la Fm. Canal de Las Escobas (antes llamada Fm. Las Escobas) los depósitos sedimentarios que corresponden a las fases transgresiva, regresiva y de nivel alto de la última ingresión marina (MIS 1). A su vez, dentro de la Fm. Canal de Las Escobas, se agrupan 4 miembros: Destacamento Río Salado, Canal 18, Cerro de la Gloria y Canal 15 (Fucks et al., 2010). Según Fucks

Página 24 | 194

et al.(2010), los miembros de la Fm.Canal de Las Escobas localizados en el Canal 15, se pueden describir de la siguiente manera:

El Miembro Destacamento Río Salado está representado por sedimentos esencialmente arcillosos o arcillosos-arenosos de color negro a negro-grisáceo. Se lo observa en la base de los afloramientos de las barrancas de cursos y canales y presenta estratificación lenticular en la base y ondulosa hacia arriba. El espesor de los estratos varía entre 2 y 4 cm, inclinado suavemente hacia el Este menos de 7°. Sobre el Canal 15, entre la ruta provincial 11 y Puente de Pascua, se observan afloramientos en la base de la barranca con estratificación cruzada planar con una inclinación del orden de los 25° tanto hacia el Este como hacia el Oeste, truncados por una neta discordancia erosiva. Estos depósitos se asocian a un ambiente intermareal de llanura costera, de baja energía, con subambientes restringidos de lagunas costeras, barreras y estuarios.

El **Miembro Canal 18** está constituido fundamentalmente por sedimentos friables de textura areno-limosa con intercalaciones arcillosas, de colores castaño amarillentos a castaño verdosos. Pueden ser homogéneos o presentar una fina estratificación areno-arcillosa, que pueden ser reemplazadas localmente por conchillas sin transportar (enteras y articuladas). En algunos sectores, se pueden encontrar en la base facies arcillo-arenosas con estratificación lenticular y ondulosa, donde los sedimentos poseen una coloración castaño-verdosa. Sus afloramientos están situados 5 km hacia el Oeste del Cerro de la Gloria, en la base del Canal 15 y están en contacto con el agua con un espesor de 0,3 m de sedimento arcillo-arenoso con estratificación ondulosa en la base y paralela hacia el techo, de 3 a 5 cm de espesor de color castaño a verde grisáceo. Parte de los estratos están compuestos enteramente por conchillas de pequeño tamaño generalmente con la concavidad hacia abajo. Este miembro se asocia a condiciones de llanura de mareas en ambientes abiertos, que se vió restringida al formarse la barrera con los cordones de tormentas.

Figura 2.3. Mapa Geológico del sector continental de la parte centro - Norte de Bahía Samborombón, La transencta A-B indica la zona media de la bahía y el curso del Canal 15 (Tomado de Fucks et al. 2010).

El Miembro Cerro de la Gloria esta formado por cordones litorales que están constituidos casi exclusivamente por concentraciones esqueletales de moluscos y rodados subordinados y arenas. Estos se hallan dispuestos en estratos de varios centímetros de espesor y longitudes variables que abarcan desde centímetros hasta decenas de metros. Los estratos presentan comúnmente una estratificación cruzada de bajo ángulo, con valvas enteras y fragmentadas en cualquier posición. Estratos con material totalmente fragmentado de tamaño arena y en otros casos con sus valvas dispuestas mayormente con la concavidad hacia abajo. En menor medida, se registran estratos de arena de colores castaños intercalados en el conjunto bioclástico. La morfología cordoniforme y otras estructuras sedimentarias estan relacionadas con ambientes de playa de alta energía.

El **Miembro Canal 15** se observa al Este de los cordones conchiles, sobre el canal del mismo nombre (Canal 15) presenta 1,5 a 2 m de espesor, está compuesto de sedimentos arcillosos,

homogéneos, de colores grises, verdes y castaños grisáceos, con gran cantidad de materia orgánica parcialmente descompuesta y óxidos de hierro. La base presenta una estratificación horizontal de arcillas y limos y hacia arriba es muy homogénea culminando con un suelo muy estructurado en prismas cubierto por materiales de destape muy plásticos y adhesivos. Esta unidad representa geomorfológicamente un ambiente con canales de mareas activos e inactivos, ocupados estos últimos por agua en forma transitoria. El ambiente corresponde a sedimentos de llanura de marea hasta marismas, en una costa en retroceso. Asimismo, son incorporados en esta unidad los sedimentos intermareales actuales compuestos de fango y con gran actividad de crustáceos.

2.2.2 Evolución geológica – geomorfológica

La evolución geológica y geomorfológica de Bahía Samborombón estuvo influenciada por los eventos transgresivos-regresivos ocurridos durante el Pleistoceno tardío y el Holoceno. En el Pleistoceno tardío la línea de costa alcanzó una altura relativa de 6 msnm generando depósitos fangosos con estratificación flaser y ondulosas de ambientes sub a intermareal, los cuales corresponden al Miembro Destacamento Río Salado (Fucks et al., 2010). A partir del máximo transgresivo que se dio entre los 5,5 - 6 ka AP, el mar comenzó su descenso hasta su posición actual (Prieto et al., 2017) generando llanuras de mareas en ambientes abiertos que se fueron restringiendo por la formación de cordones de tormenta, cuando el nivel del mar se estabilizó en una posición intermedia entre la costa actual y el máximo transgresivo. Estos depósitos corresponden a los Miembros Canal 18 y Cerro de la Gloria respectivamente (Fucks et al., 2010). Hacia el Este de los cordones de conchillas, en la etapa regresiva del nivel del mar, se depositó el Miembro Canal 15, el cual corresponde a ambientes que van desde llanuras de marea hasta marismas (Fucks et al., 2010).

CAPÍTULO 3. MATERIALES Y MÉTODOS

3.1 Trabajo de campo / toma de muestras

Para llevar a cabo los objetivos de este trabajo, se tomaron 58 muestras superficiales distribuidas en la zona costera de Bahía Samborombón (Fig. 3.1, Tabla 3.1) y 2 perfiles, en campañas realizadas en 2014, 2015, 2017, 2018 y 2019, que se muestran a continuación:

Figura 3.1. Ubicación geográfica de las muestras. Los puntos verdes indican la ubicación de los perfiles (muestras holocenas) y los puntos morados la localización de las muestras superficiales (muestras actuales).

Тіро	Lugar	ID	Latitud	Longitud		
	Intersección Canal 15	DN/12	35 36 8 225	57 15 32 520		
Perfil	y Río salado	FIVIZ	33 30 8,233	57 15 52,520		
	Canal 15	PS	35 55 18,74S	57 44 7,900		
		MS01(14)	35 58 9,70S	57 23 15,900		
		MS02(14)	35 58 11,60S	57 23 24,600		
		MS03R(14)	35 58 12,50S	57 24 15,600		
		MS04(14)	35 58 13,10S	57 24 30,200		
		MS05(14)	35 58 13,20S	57 24 51,280		
		MS1(15)	35 58 20,90S	57 23 22,000		
		MS2(15)	35 58 21,40S	57 23 23,000		
		MS3(15)	35 58 22,00S	57 23 23,600		
		MS4(15)	35 58 21,50S	57 23 28,400		
		MS5(15)	35 58 21,80S	57 23 34,300		
		MS6(15)	35 58 22,205	57 24 34,700		
		C15(18)01	35 58 17,755	57 23 21,100		
		C15(18)02	35 58 17,50S	57 23 24,000		
		C15(18)03	35 58 17,80S	57 23 30,030		
	Canal 15	C15(18)04	35 58 18,30S	57 23 39,100		
		C15(18)05	35 58 18,30S	57 23 47,000		
		C15(18)06	35 58 18,60S	57 24 6,500		
		C15(18)07	35 58 19,70S	57 24 37,800		
		C15(18)08	35 58 20,10S	57 24 50,400		
		C15(18)09	35 58 20,80S	57 25 13,600		
		C15(18)09	35 58 20,80S	57 25 13,600		
		C15(18)10	35 58 21,10S	57 25 20,200		
		C15(18)11	35 58 21,30S	57 25 36,400		
		C15(18)12	35 58 22,60S	57 26 3,900		
		C15(18)13	35 58 22,505	57 26 14,800		
		C15(19)03	35 58 17,94S	57 23 25,5480		
		C15(19)09	35 58 19,0565	57 24 20,0160		
		C15(19)11	35 58 20,4965	57 25 8,1110		
- .		C15(19)13	35 58 22,1525	57 26 1,2480		
Transecta		PR(19)01	36 17 43,3685	56 46 6,5630		
	Dunto Daca	PR(19)02	36 17 55,8965	56 46 46,3080		
	Pulla Kasa	PR(19)04	36 18 14,2925	56 46 47,3520		
		PR(19)03	36 18 16,0925	56 46 47,7480		
		PR(19)05	36 18 12,8165	56 46 3,7910		
		RS(17)IVI1	35 45 12,405	57 22 11,990		
		RS(17)IVIZ	35 44 45,955	57 22 1,050		
		R3(17)IVI3	25 44 40,703	57 22 23,850		
		RS(10)01	35 44 45,105	57 22 34,900		
		RS(18)02	35 44 44,205	57 22 20,400		
		RS(18)03R	35 44 43 969	57 22 17,400		
		RS(18)03C	35 44 44 735	57 22 17 220		
		RS(18)04	35 45 13 165	57 21 48 500		
	Río Salado	RS(18)05	35 45 10.905	57 21 46,500		
		RS(18)06	35 45 1.305	57 21 44.000		
		RS(18)07	35 44 56.205	57 21 46.800		
		RS(18)08	35 44 48,825	57 21 54,490		
		RS(18)09	35 44 41,705	57 22 9,400		
		RS(18)10	35 44 47,105	57 22 38,910		
		RS(19)01-1	35 45 14,225	57 21 48,8150		
		RS(19)04-1	35 44 59,064S	57 21 45,0720		
		RS(19)07-1	35 44 45,7085	57 21 57,5630		
		RS(19)11-1	35 44 43,764S	57 22 6,7070		
		RS(19)13-1	35 44 46,5365	57 22 35,2190		
		R36(17)M1	35 36 20,725	57 15 24,440		
	Bute 36	R36(17)M2	35 36 9,35	57 15 300		
	หนเส 36	R36(17)M3	35 36 4,9685	57 15 33,480		
		R36(17)M4	35 35 49,055	57 15 57,510		
		R36(17)M5	35 35 47,255	57 16 4,510		

Tabla 3.1. Localización geográfica de todas las muestras tanto superficiales como los dos perfiles analizados en este trabajo.

3.1.1 Muestras superficiales

Con el objetivo de analizar la distribución y abundancia de los foraminíferos bentónicos actuales en Bahía Samborombón y sus implicancias ecológicas y ambientales, se tomaron 58 muestras de sedimento superficial en cuatro sectores de la bahía, buscando abarcar diferentes ambientes a lo largo de la bahía, relacionados con la influencia de agua marina y un posible gradiente de salinidad en dirección norte - sur. La toma de las muestras se efectuó durante 5 campañas realizadas en los veranos de 2014, 2015, 2017, 2018 y 2019. Cada punto de muestreo se georreferenció usando un GPS Garmin E-TREX 20x. En 3 sectores se realizaron transectas en dirección Este - Oeste y en el sector de Punta Rasa se tomaron muestras aleatorias tratando de abarcar diferentes ambientes (Fig.3.1, Tabla 3.1).

La primera transecta denominada Ruta 36 **(R36)** se localizó en el sector Norte de la bahía, específicamente en la intersección de la ruta 36 y la ruta 11 entre los 35° 35' 47,25"S / 57° 16' 4,51"Oy 35° 36' 20,72"S / 57° 15' 24,44"O. Se muestrearon 5 puntos a lo largo de 1,8 km.

La segunda transecta denominada Río Salado **(RS)** se localizó en el sector Norte - centro de la bahía, en el margen derecho de la desembocadura del río Salado, específicamente entre los 35° 44' 47,10"S / 57°22' 38,91"O y los 35°45' 14,22"S / 57° 21' 48,81"O. Se tomaron 20 muestras a lo largo de aproximadamente de 2,5 km.

La tercera transecta denominada Canal 15 **(C15)** se ubicó sobre los márgenes derecho e izquierdo de la desembocadura del Canal 15, en el sector central de la bahía específicamente entre 35° 58 9',70″S / 57° 23' 15,90″O. Se muestrearon 29 puntos en total a lo largo de aproximadamente 7 km del canal.

Asimismo, en la zona sur de la bahía específicamente en Punta Rasa **(PR)** entre los 36° 17′ 43,36″S / 56° 46′ 6,56″O y los 36° 18′ 12,81″S / 56° 46′ 3,79″O,se muestrearon un total de 4 puntos en diferentes sitios de dicho sector de la bahía.

Para la extracción de las muestras de sedimento se usó un aro de pvc de 8 cm de diámetro y 1.5 cm de alto. El sedimento recolectado se almacenó en bolsas con cierre hermético y se preservó con una solución de alcohol con colorante rosa de Bengala (2 g/L) para realizar análisis biológicos. La muestra restante se colocó en bolsas y se almacenaron en heladera a 4°C, para la realización de análisis geoquímicos y granulométricos.

Por otro lado, cuando las muestras de sedimento estuvieron sumergidas en agua se midió la conductividad y la temperatura del agua usando un equipo Horiba U10 y el pH del agua usando tiras indicadoras de pH.

3.1.2 Perfiles holocenos

Se muestrearon 2 perfiles, el primero está ubicado sobre la margen derecha del Canal 15 y el segundo sobre la margen derecha del Río Salado. Buscando generar una transecta perpendicular al margen de la costa, en la zona central de la bahía (Fig. 3.1, Tabla 3.1).

El primer perfil denominado Perfil M 2 (**PM2**), de 258 cm de espesor, se extrajo en el margen derecho del Canal 15 (35° 58' 16,4" S, 57° 28' 58,7" O) a una distancia de 12,5 km de la costa.

El segundo perfil se denominó Perfil Salado (**PS**), de 171 cm de espesor, se extrajo del margen derecho del río Salado (35°55′ S, 57°53′ O; 5 msnm) a 34,43 km de la costa actual de la bahía.

Los perfiles fueron obtenidos manualmente por tramos desde la base al tope mediante la utilización de tubos de pvc que fueron hincados verticalmente usando un martillo cuando fue necesario con cuidado de no disturbar el material a utilizar. A medida que progresaba la extracción se rotuló cada tramo indicando su número y posición. Los perfiles se submuestrearon cada 1 cm desde la base hasta el techo, rotulándose cada nivel/muestra con el nombre del perfil correspondiente, el tramo y el nivel en centímetros (por ejemplo, PM2-T1-00-01). Se analizaron las muestras cada 5 centimetros. En total se submuetrearon para análisis 54 muestras para el PM2 y 36 muestras para el PS.

3.2 Tareas de laboratorio

3.2.1 Procesamiento de las muestras

Tanto para el procesamiento de las muestras superficiales como para las muestras holocenas, se disgregó el sedimento sumergiéndolo en agua durante un tiempo que va desde algunas horas hasta 2 días dependiendo del grado de consolidación de dichos sedimentos. Posteriormente, se lavaron las muestras bajo agua corriente a través de un tamiz de ancho de malla de 63 µm (Tyler ScreenSystem N° 230), para eliminar la fracción más fina. Por último, se dejaron secar a temperatura ambiente.

3.2.2 Tamaño de grano

El análisis del tamaño de grano se realizó mediante tamizado. Las muestras de sedimento bruto ya secas se pesaron (peso inicial), luego se tamizaron a través de un tamiz de 63 µm bajo agua corriente, con el fin de separar la fracción gruesa (grava y arena) de la fracción fina (limo y arcilla). Luego, el material retenido en el tamiz se dejó secar a temperatura ambiente. Finalmente, se tamizó en seco a través un tamiz N°10 para registrar los valores de la fracción grava. Estos valores se expresaron como porcentaje del peso total.

3.2.3 Análisis geoquímicos

En el laboratorio, todas las muestras de sedimento tomadas especialmente para este propósito se secaron en estufa a 60°C. Cada muestra fue tamizada a través de un tamiz de 500 μm de abertura de malla (Newark, ASTM N°36 U.S.A. Standard Series Sieves) para eliminar la fracción gruesa menos reactiva. Sobre la fracción así obtenida se realizaron los siguientes análisis:

a) Fósforo Total (PT): se determinó a partir de una digestión con H₂SO₄ concentrado y peróxido de hidrógeno (H₂O₂) 30% (Carter, 1993). Después de la digestión se determinó el contenido de fósforo de acuerdo con la metodología propuesta por Murphy y Riley (1962).

b) Nitrógeno Total y Carbono Total: estos análisis fueron realizados mediante un analizador automático de C y N (Thermo Flash EA 1112).

Las muestras se analizaron por las siguientes metodologías alternativas:

Nitrógeno Total (NT): método Kjeldahl (método semi-micro Kjeldahl N° 4500 Norg C; APHA, 1995). Este método determina las fracciones orgánica y amoniacal del nitrógeno y no las correspondientes a los nitratos y nitritos. De acuerdo con Golterman (2004), generalmente en los sedimentos el nitrógeno se encuentra en forma orgánica siendo la fracción amoniacal la forma principal de liberación de N de los sedimentos, mientras que los nitratos y nitritos suelen aparecer solo en el agua intersticial. El límite de detección del método es < 0,1 mg/g (0,01 %).

Materia Orgánica (MO): se estimo de la muestra de sedimento por el método de pérdida de peso por ignición (LOI) o calcinación en mufla a 550°C durante 4 hs (Dabadie et al., 2018; Hoogsteen et al., 2015), el cual determina la Materia Orgánica Total y no el Carbono Total. Experiencias realizadas en el laboratorio de Suelos del Centro Regional Bariloche, estimaron que el Carbono Total puede ser calculado a partir de la Materia Orgánica Total, dividiendo esta por un factor 2 (Paula Crego com. pers.).

Cálculo del % de CO a partir del %MO: se utilizó el factor de Van Benmelen de 1.724 que resulta de la suposición que la materia orgánica del suelo contiene un 58% de carbono (1/0.58=1.724) según describe en NOM-0.21-SEMARNAT-(2002)

Donde %M = Porcentaje de Materia Orgánica

%CO = Porcentaje de carbono o contenido de carbono orgánico.

3.2.4 Distancia a la costa y valores de elevación

La distancia a la costa y los valores de elevación fueron obtenidos a través del modelo de elevación digital proporcionado por el programa Google Earth (DEM SRTM30).

3.3 Extracción e identificación de los foraminíferos

El análisis de los caracteres diagnósticos necesarios para la clasificación sistemática se realizó utilizando una lupa binocular ZEISS Stemi 305 con aumentos de hasta 100 X. La identificación a nivel de género y supragenérico se basó en Loeblich y Tappan (1988, 1992), Sen Gupta (1999), Pawlowski et al., (2013), mientras que para las categorías menores se basó en Boltovskoy et al. (1980), Bernasconi y Cusminsky, (2007); Calvo-Marcilese, (2011); Calvo-Marcilese et al. (2011); Cusminsky et al. (2009) y Laprida, (1997). Los individuos de las especies más representadas fueron fotografiados con el Microscopio Electrónico de Barrido (Philips SEM 515) del Centro Atómico Bariloche y guardados en el repositorio de la Universidad Nacional del Comahue, Río Negro, Argentina, bajo los números UNC-PMIC-65 a 176 y UNC-PMIC 237 a 251.

3.4 Análisis tafonómico

Los procesos tafonómicos son aquellos que cambian la preservación de los organismos y la composición de las asociaciones cuando pasan de vivos a muertos y posteriormente a fósiles (Murray, 2006). Diferentes procesos como el tranposte, el retrabajo, la disolución, la compactación, alteraciones quimica, entre otras, imparten características distitnas a conchillias que componen los ensambles de foraminíferos reflejando escalas de tiempo de depositación y acumulación (Brandt,

1989b; Hassan et al., 2014). Estos procesos generan, en algunos casos, la pérdida de información debido a la destrucción de las conchillas ya sea por ejemplo por disolución, abrasión química y/o mecánica, transporte, entre otros. Estos, están relacionados con las caracteristicas del ambiente pudiendo promover "errores" en la interpretación del registro micropaleontológico y las reconstrucciones paleoambientales. Entender estos procesos tafonómicos nos permite generar indagar sobre aspectos relacionados con la dinámica, biogeoquímica y condiciones de los ambientes depositacionales estudiados.

Los procesos tafonómicos se pueden dividir en: **1**) **biostratinómicos**, los cuales se ejercen entre el momento de la muerte y su enterramiento, como el transporte, la desarticulación, la fragmentación, la abrasión mecánica o corrosión, la disolución, la bioerosión y el retrabajo; y **2**) **fósil diagenéticos**, los cuales consiste en las transformaciones físicas y químicas ocurridas posterior al enterramiento, principalmente los procesos diagenéticos tempranos como fenómeno de disolusión, rellenos de los caparazones por sedimento o minerales, los cuales le aportan diferentes grados de coloración a las conchillas (Laprida, 1997). Por ejemplo, la coloración negra en los fósiles se relaciona con la formación de pirita resultado de un enterramiento y condiciones anoxicas Brandt (1989).

Para evaluar el grado de preservación de los foraminíferos bentónicos y los procesos tafonómicos que intervienen en las muestras fósiles y actuales, se realizó un análisis tafonómico de los individuos. Para ello, se definieron cuatro grupos tafonómicos basados en Brandt (1989) y Laprida y Bertels-Psotka (2003). Los grupos determinados fueron **A**) conchillas bien preservadas, o como máximo a las que les falta la última cámara, **B**) conchillas "negras" con relleno en las cámaras y/o con un recubrimiento pulido en tonos de negro y marrón oscuro, **C**) conchillas rotas o fragmentadas, indicando cáscaras con menos del 50% del material de su conchilla originaly **D**) conchillas pulidas o con signos de abrasión o retrabajo. Las conchillas con signos de abrasión incluyen aquellas erosionadas con características morfológicas pulidas e intensamente erosionadas hasta completamente desgastadas. Tanto la abrasión (agentes físicos) como la disolución (procesos químicos / biológicos) pueden crear firmas tafonómicas similares que normalmente no son posibles de distinguir entre ellas. Por lo tanto, la abrasión y la fragmentación se establecieron contando las roturas independientemente de que el origen sea físico, químico y/o biológico (Laprida et al., 2011).

3.5 Análisis de diversidad y abundancia

Para la obtención de los ejemplares, a partir del residuo seco se seleccionaron entre 100 y 300 individuos cuando fue posible. Los resultados de los conteos en cada muestra se expresaron como el número de individuos por gramo de sedimento seco. Se determinó la abundancia total (número total de individuos en cada muestra), la abundancia absoluta (expresada en todos los casos como individuos / 1 g de sedimento) y la abundancia relativa (proporción de una especie en relación al total de cada muestra), (Buzas y Hayek, 2005).

La distribución de las especies es utilizada para describir la estructura de la comunidad y determinar los procesos ecológicos que subyacen a dicha estructura (Magurran, 2004). La diversidad se puede entender como una medida de heterogeneidad del sistema, es decir, de la cantidad y proporción de los diferentes elementos que contiene la comunidad (Bernasconi, 2006).

En paleontología, los índices de biodiversidad pueden ayudar en la comprensión de los ambientes pasados. La diversidad se puede graficar en función del tiempo para identificar eventos y tendencias. Asimismo, resulta un buen indicador ambiental y geográfico, por ejemplo, la diversidad por lo general es relativamente baja en ambientes "estresados" como aguas salobres (Hammer y Harper, 2006). La diversidad es útil para caracterizar diferentes comunidades como es el caso de las especies oportunistas o pioneras las cuales tendrían una diversidad relativamente baja en comunidades con mayor equilibrio (Hammer y Harper, 2006).

La aplicación de los índices de diversidad en reconstrucciones paleoambientales permiten describir los ambientes sedimentarios e interpretar las condiciones bajo las cuales se establecieron las secciones estratigráficas. La gran mayoría de los métodos propuestos para evaluar la diversidad de especies se refieren a la diversidad dentro de las comunidades o diversidad alfa (Magurran, 2004; Hammer y Harper, 2006).

El uso de la tanatosenosis (vivos y muertos) es controversial debido a que en algunos casos no refleja la composicio real de las asociaciones de foraminíferos actuales, debido a la perdida de información por procesos tafonómicos o a la subestimación en la composición de los ensambles debido al aporte de conchillas externas o posmortem (Belart et al., 2018; Calvo-Marcilese and Pratolongo, 2009). Sin embargo, entender la dinamica entre los ensables vivos, muertos y totales nos permite entender el registro paleontologico de una manera mas aplia, facilitando la comparación posterior con los ensambles fósiles (Horton et al., 1999b).

Algunos métodos están basados en la cuantificación del número de especies presentes o riqueza específica **(S)**. Otros métodos apuntan a la estructura del ensamble, es decir, la distribución proporcional del valor de importancia de cada especie (abundancia relativa de los individuos, su biomasa, cobertura, productividad, etc.), pudiendo clasificarse según consideren la dominancia o la equidad de la comunidad (Moreno, 2001). Los índices basados en la dominancia son parámetros inversos al concepto de uniformidad o equidad. Estos toman en cuenta la representatividad de las especies con mayor valor de importancia sin evaluar la contribución del resto de las especies (Moreno, 2001). Se describen a continuación los empleados en este trabajo:

La **riqueza específica (S)** es la forma más sencilla de medir la biodiversidad, ya que toma en cuenta únicamente en el número de especies presentes. La forma de medir la riqueza específica es contar el número total de especies (S) obtenido por un censo en la comunidad. Esto es posible únicamente para ciertos taxones bien conocidos y de manera puntual en tiempo y espacio (Moreno, 2001).

El **índice de Shannon-Wiener (H)** asume que los individuos son seleccionados al azar y que todas las especies están representadas en la muestra. Expresa la uniformidad de los valores de importancia a través de todas las especies de la muestra midiendo el grado promedio de incertidumbre en predecir a que especie pertenecerá un individuo escogido al azar de una colección (Magurran, 2004). Este índice se calcula de la siguiente manera(Buzas y Gibson, 1969a y b)

$$H = -\sum_{i} \frac{n_i}{n} \ln \frac{n_i}{n}$$

donde se tiene en cuenta el número de individuos (*n*) y el número de taxones para cada muestra (n_i). **H** adquiere valores entre cero, cuando hay una sola especie, y el logaritmo de *S*, cuando todas las especies están representadas por el mismo número de individuos (Harper, 1999; Magurran, 2004; Moreno, 2001).

El índice **Alfa de Fisher (** α **)** fue definido por Fisher et al., (1943). Este índice está en concordancia con un modelo de abundancia logarítmica. Cuando tal modelo no se cumple, el índice alfa de Fisher no es realmente significativo, pero aun así parece ser un índice que funciona bien en la práctica (Hammer y Harper, 2006). El mismo se calcula con la siguiente fórmula matemática:

$$\alpha = n' \times 1/x$$

donde x es una constante menor que 1 y n' puede ser calculada como N (1-x) siendo N el número de individuos (Murray, 1991). Este índice es calculado para muestras con más de 100 individuos.

El **índice de dominancia de Simpson** manifiesta la probabilidad de que dos individuos tomados al azar de una muestra sean de la misma especie y está fuertemente afectado por la importancia de las especies más dominantes (Magurran, 2004; Peet, 1974). Entonces los taxones más comunes contribuirán desproporcionadamente más a la suma total, porque se considera la frecuencia relativa de cada taxón al cuadrado.

donde *pi* es la abundancia proporcional de la especie *i*, es decir, el número de individuos de la especie *i* dividido entre el número total de individuos de la muestra. El índice será cercano a 1 si hay un solo taxón dominante.

Con el objetivo de describir los ambientes e interpretar las condiciones bajo las cuales se depositaron los sedimentos, se estimaron los valores de diversidad alfa utilizando métodos basados en la cuantificación de especies (riqueza especifica) y en la estructura del ensamble (dominancia y equidad). Los valores del índice de riqueza específica, de diversidad Shannon-Wiener, Alfa de Fisher y dominancia de Simpson para cada muestra se calcularon con el parograma PAST (Hammer et al., 2001).

3.6 Relaciónentre individuos epifaunales e infaunales

La morfología de las conchillas estaría directamente relacionada con el flujo de carbono orgánico al fondo marino (Corliss y Chen, 1988). Estas estructuras varían de acuerdo con las condiciones de vida; en microhábitats epifaunales bien oxigenados, las conchillas tienden a ser redondeadas, plano convexas o biconvexas con en rollamiento trocoespiral, con grandes poros que pueden estar ausentes o restringidos a un lado de la conchilla; mientras que en microhábitats infaunales, las conchillas serán generalmente redondeadas planiespirales, cilíndricas globulares u ovaladas, ovoides aplanadas y con enrollamiento uniserial, triserial o planiespiral y con poros distribuidos en toda la superficie de la conchilla (Corliss y Chen, 1988).

Para determinar el porcentaje de infaunales y epifaunales de las muestras superficiales y las provenientes de los perfiles, se clasificaron y contaron los organismos de acuerdo con las características morfológicas de sus conchillas estimándose el porcentaje por medio de la siguiente ecuación (Corliss,1985; Corliss y Chen, 1988):

% E = E/E+I *100 % I = 100 - % E

Donde *E*, es el número de individuos epifaunales e *I*, el número de individuos infaunales recuperados por cada muestra.

3.7 Índice de Kaiho (BFOI)

Este índice es usado para la determinación de los niveles de (paleo)oxigenación (Kaiho, 1994, 1999).Para determinar el índice de Kaiho, se dividieron los foraminíferos bentónicos calcáreos en tres grupos indicadores de acuerdo con su morfología: los disóxicos (0,1-0,3 ml/l), los subóxicos (0,3-1,5 ml/l) y los óxicos (>15 ml/l), sobre la base de la relación entre las características morfológicas específicas, los niveles de oxígeno y microhábitats de los foraminíferos calcáreos bentónicos

(Bernasconi et al., 2009; Bernasconi et al., 2018). Este índice asume que los morfotipos de los foraminíferos bentónicos pueden ser usados como análogos modernos (Kaiho, 1999). Se calcula el índice de Kaiho (BFOI) utilizando la siguiente ecuación matemática:

$$BFOI = O/O+D *100$$

Siendo *O* y *D* el número de especímenes óxicos y disoxicos, respectivamente. En las muestras donde el número de especímenes óxicos fue nulo, *O*=0, entonces se aplicó la expresión:

donde *S* es la suma del número de individuos subóxicos. Una vez obtenidos los valores de BFOI es posible determinar las condiciones de oxigenación de acuerdo a Kaiho (1994):

Condición do	Nivel de		
	oxígeno	BFOI	Foraminíferos bentónicos calcáreos característicos
oxigenation	(mL/L)		
Óxica alta	3.0-6.0+	50 - 100	Disóxicos, subóxico y alto porcentaje de óxicos
Óxica baja	1.5 – 3.0	0 -50	Disóxicos, subóxico y bajo porcentaje de óxicos
Subóxico	0.3 – 1.5	-40 - 0	Disóxicos y un alto porcentaje de subóxicos
Disóxico	0.1-0.3	-50 –40	Disóxicos y un bajo porcentaje o carente de subóxicos
Anóxico	0.0-0.1	-55	Ausencia de foraminíferos bentónicos

El oxígeno disuelto para cada muestra puede estimarse mediante la relación empírica entre el índice de oxígeno disuelto en base a foraminíferos bentónicos y los niveles de oxigenación en los océanos modernos (Kaiho, 1994, 1999).

3.8 Índice Ammonia-Elphidium (IAE)

Este Índice es aplicado con el fin de analizar regiones afectadas por hipoxia debido a una gran contribución de materia orgánica (Eichler et al., 2015; Pregnolato et al., 2018; Sen Gupta y Platon, 2006; Sen Gupta et al., 1996). Dicho índice se calcula con la siguiente fórmula (Sen Guptaet al., 1996):

$$IAE = [NA / (NA + NE)] \times 100$$

donde *NA* y *NE* representan el número de individuos de especies de los géneros *Ammonia* y *Elphidium*, respectivamente, en cada muestra.

Las especies de los géneros *Ammonia* y *Elphidium* tienen una amplia distribución siendo comunes en ambientes marino-marginales y costeros desde aguas frías hasta templadas y tropicales. Por otro lado, diversos estudios indican que las poblaciones de *Ammonia* son más tolerantes a la disoxia o anoxia que las especies del género *Elphidium* (Kitazato, 1994; Platon y Sen Gupta, 2001). Teniendo en cuenta esto, Sen Gupta y Platon (2006) plantearon la hipótesis de que un índice basado en las proporciones de estos géneros en un ensamblede foraminíferos podría servircomo un indicador de los niveles de hipoxia.

3.9 Elaboración de mapas

Se realizaron mapas de las variables ambientales y ecológicas a partir de los datos obtenidos usando el programa QGis 3.12. Para representar las variables de interés se seleccionó la opción *Graduado* o *categorizado*, se aplicó el modo *conteo igual (cuantil)* y se estableció el número clases necesarias que representaran adecuadamente la variable.

3.10 Análisis estadísticos

3.10.1 Coeficiente de correlación de Spearman

Con el objetivo de determinar cuáles variables ambientales estarían correlacionadas entre sí, se realizó un análisis de correlación de Spearman utilizando el paquete Performance Analytics del programa estadístico R (R Core Team, 2022). A su vez, se utilizó este análisis para explorar si existe una correlación entre los grupos tafonómicos, los índices de diversidad, el BFOI y el IAE con las variables ambientales analizadas.

3.10.2 Análisis de Componentes Principales

Para llevar a cabo la caracterización de los sitios en función de las variables ambientales (temperatura, conductividad, distancia a la costa, elevación, porcentaje de lodos, nitrógeno total, fósforo total, materia orgánica y carbono total) se realizó un Análisis de Componentes Principales (ACP). Para esto, se efectuó una matriz de correlación y posteriormente un gráfico con los dos primeros componentes principales calculados. Para ello, se utilizaron los paquetes "factoextra" y "vegan" (Oksanen et al., 2020) del programa estadístico R (R Core Team, 2022).

3.10.3 Análisis de escalamiento multidimensional no métrico (nMDS)

Con el objetivo de obervar si existía un patrón en la distribución de las muestras superficiales en base a su asociación de foraminíferos bentónicos, se realizó un análisis de escalamiento multidimensional no métrico (nMDS).

El nMDS a diferencia de los otros métodos de agrupamiento, es una técnica no métrica y permite utilizar cualquier coeficiente de similitud. El nMDS fue calculado a partir de la matriz de correlación de Spearman de datos microfaunísticos. Se tuvieron en cuenta todos los taxones con un porcentaje mayor o igual al 2 % en al menos 2 muestras. Se utilizó como distancia de agrupamiento

el coeficiente de distania euclidiana y el análisis se realizó a través del programa estadístico R con el paquete "vegan".

3.10.4 Análisis de correspondencia canónica (ACC)

Con el objetivo de estudiar la relación entre la composición de especies del ensamble de foraminíferos y las variables ambientales se realizò un análisis de correspondecia canonica (ACC) usando la matriz de abundancia de especies con una abundancia mayor o igual al 2% en màs de una muestra y una matriz de variables ambientales compuesta por las variables: pH, conductividad, porcentaje de lodos, distancia a lacosta, elevación, temperatura, usando el paquete "vegan" del programa estadístico R.

3.10.5 Análisis de los perfiles holocenos

Para distinguir diferentes zonas de los perfiles en función de las asociaciones faunísticas determinadas, se llevó a cabo un análisis de agrupamiento respetando el orden estratigráfico ("Unconstrained cluster análisis"). Para ello, se usó el programa CONISS incluido en el paquete estadístico Tilia 2.0 (Grimm, 1994). El análisis se basó en las especies de foraminíferos que presentaron una abundancia relativa igual o mayor al 2% en al menos dos niveles (Fatela yTaborda, 2002). Se empleó la transformación de datos por estandarización a media 0 y desviación típica 1 y como coeficiente de distancia se aplicó la distancia euclidiana estandarizada. Los grupos se formaron según el método de agrupamiento jerárquico de la suma de cuadrados del error (Grimm, 1994).

3.11 Edad de los sedimentos

La cronología del PM2 se obtuvo través de tres edades radiocarbónicas. 2 obtenidas a partir de especímenes de *Mactra.isabelleana* y una a partir de materia orgánica en el sedimento. Estas

Página 43 | 194

dataciones se realizaron en EL LATYR (CIG-CONICET), La Plata, Argentina y en el laboratorio Direct AMS, Seattle, USA. Para el perfil PS se tomaron las dataciones aportadas por Vilanova y Prieto (2012).

Todas las edades se calibraron utilizando el programa Calib Rev. 8.1.0 (Stuiveret. al., 2022) usando la curva de calibración Marine20 (Heaton et al., 2020) y la curva de calibración shcal 20.14c (Hogg et. al., 2020), con un error de 2σ y donde cero es 1950 D.C.

CAPÍTULO 4. FORAMINÍFEROS ACTUALES Y VARIABLES AMBIENTALES DE LA BAHÍA SAMBOROMBÓN

4.1. Antecedentes

Las asociaciones de foraminíferos bentónicos actuales reflejan con buena precisión diversos parámetros ambientales, por ejemplo los ambientes marino-marginales son afectados por la salinidad, el flujo de agua dulce, el pH, la elevación del sitio de muestreo en relación a los patrones de mareas, la concentración de elementos como el carbono orgánico entre otros (Benito et al., 2016; Bouchet et al., 2021; De Rijk, 1995; Francescangeli et al., 2021; Hayward y Grenfell, 1999; Leipnitz et al., 2014). Los foraminíferos poseen distribuciones restringidas en la zona intermareal y supramareal, por lo tanto, se pueden considerar como buenos bio-indicadores de determinadas facies sedimentarias costeras y de los niveles de marea (Horton y Murray, 2007; Horton et al., 1999; Horton y Edwards, 2005).

Numerosos estudios a nivel mundial se han enfocado en analizar la ecología de los foraminíferos actuales de ambientes marino-marginales, con el fin de inferir a partir de esta información las fluctuaciones del nivel del mar, la posición de la línea de costa y los paleoambientes predominantes (Hayward y Grenfell, 1999; Horton y Edwards, 2005; Hayward et al., 2010; 2011; Kemp et al., 2013), o como herramienta en monitoreos de calidad ambiental de ecosistemas acuáticos actuales (Raposo et al., 2018; Scott et al., 2001). No obstante, en Argentina son pocos los trabajos que tienen como objetivo el análisis conjunto de la distribución y abundancia de los foraminíferos actuales y su ecología, tanto en ambientes en transicionales como marismas. En la bibliografía se encuentra el trabajo realizado por Calvo-Marcilese y Pratolongo (2009), quienes analizaron la distribución y abundancia de foraminíferos bentónicos superficiales de la llanura de marea del estuario de Bahía Blanca. Simultáneamente, existen reportes de *Haynesina germanica* como especie invasora y se han realizado estudios morfogenéticos y biogeográficos del género

Buccella provenientes de muestras superficiales y holocenas para la misma zona (Calvo-Marcilese y Langer, 2010; Calvo-marcilese yLanger, 2012). Por otro lado, Laprida et al. (2011) analizaron la composición de especies supra-mareales y sub-mareales en una transecta ubicada en ambientes litorales en la localidad de Mar de Ajó. Posteriormente, Márquez (2016) estudió los foraminíferos litorales actuales del partido de Mar Chiquita reconociendo ambientes marino-marginales.

La Bahía Samborombón, debido a sus características particulares como su gran extensión y biodiversidad es un área de gran interés para estudios paleoambientales del Cuaternario. Asimismo, es un lugar con gran potencial para el estudio ecológico de los foraminíferos bentónicos debido a la numerosa cantidad de ambientes y subambientes, gradientes de salinidad, rango de marea y condiciones ambientales excepcionales, representadas en un extenso humedal mixohalino. Este entorno único tiene características distintivas debido a su diversidad ecológica y riqueza de especies, por lo que su estudio adquiere relevancia internacional (Bertoni y Bertolotti, 2004).

Teniendo en cuenta lo anteriormente mencionado, este capítulo explora la distribución de los foraminíferos bentónicos procedentes de sedimentos superficiales de Bahía Samborombón y su relación con factores ambientales como la temperatura, el tamaño de grano, el nitrógeno total, el fósforo total, el carbono total, la materia orgánica, la conductividad, el pH, la distancia a la costa y la elevación.

4.2 Resultados

En este apartado se presentan los resultados de los análisis realizados sobre muestras de sedimento superficial tomadas en la región costera de Bahía Samborombón (Fig. 4.1, Tablas 4.1). Se analizaron en total 58 muestras superficiales. En 41 de ellas fue posible tomar valores de conductividad, pH y temperatura del agua debido a que se encontraban sobre el cauce de los canales, en la playa o en una zona inundada. Por otro lado, a 17 muestras (5 localizadas en R36, 8 en RS y 4 en C15) se les realizaron análisis químicos del sedimento, con el objetivo de explorar si existía un patrón en la distribución del nitrógeno total (NT), el fósforo total (FT), la materia orgánica (MO) y el carbono total (CT). En lo concerniente al análisis de la fauna de foraminíferos bentónicos solo fue posible analizar 28 muestras localizada en las cuatro áreas de estudio. Estas fueron seleccioandas con el propósito de abarcar, en lo posible, un gradiente de distancia a la costa (Fig. 4.1, Tablas 4.1, 4.2).

4.2.1 Variables ambientales

Tamaño de grano

En general, los resultados obtenidos de este análisis indicaron que las fracciones arena y lodo (limo y arcilla) formarón parte del sedimento en todas las muestras. La fracción arena estuvo compuesta principalmente de arenas finas y muy finas, que se interpretaron en conjunto como arena dado que representaron un porcentaje muy bajo en relación con el porcentaje total. La fracción lodo constituyó entre el 3,9 y el 100% del peso total del sedimento. En promedio los porcentajes más altos de la fracción lodo se localizarón en la zona norte (RS-R36) y centro (C15) de Bahía Samborombón y estuvo distribuidos de manera muy homogénea en estas áreas (Fig. 4.3, Anexo II), con exepción de 4 muestras (3 localizadas en C15: C15(19)14, C15(19)12 y MS04(14) y 1 en R36: R36(17)M3) que presentaron porcentajes menores al 32% de lodo. Las muestras localizadas al sur de la bahía (PR) mostraron los valores más bajos de lodos, entre el 40,8 y 7,2% y los valores más altos de arenas, entre 59,2 y 96,0% (Tabla 4.1 Fig. 4.3, Anexo II).

Lugar	ID	Análisis de	Longitud	Latitud	Distancia a la costa	Elevación	Lodo (%)	Arena (%)	Conductivida	pН	Temperatura	PT (μg/g	NT (%)	CT (%)	MO (%)
		foraminíferos			(km)	(m)			d (µsm)	·	(°C)	d.w)	(*)	- (- /	,
	R36(17)M1	x	35 36 20,725	57 15 24,440	-0,31	0	78,51	21,49	0.3	7,00	23.5	918,50	0,26	2,24	12,01
	R36(17)M2	x	35 36 9,35	57 15 300	0,02	2,98	16 72	20,76	1,00	7,00	22.5	1134,00	0,32	2,80	12,89
R36	R36(17)M4	x	35 35 49 055	57 15 57 510	0,10	2,4	92.69	05,27 7 31	4,00 NA	0,00 NA	22.2 NA	1069.00	0,12	4,00	9,65
	R36(17)M5	x	35 35 47,255	57 16 4,510	1,13	3,19	81,37	18,63	NA	NA	NA	1203,00	0,37	4,60	18,50
	Media						69,71	30,29	1,77	6,67	22,73	1638,10	0,27	3,57	13,83
	Desviación						30,16	30,16	1,97	0,58	0,68	1249,87	0,10	1,14	3,49
	RS(18)01		35 44 45,10S	57 22 34,900	1,26	1,1	80,93	19,07	12,10	5,00	12,70	NA	NA	NA	NA
	RS(18)02		35 44 44,203	57 22 28,400	0.85	1,59	95,59	4 95	10,10	5,00	12,00	NA	NA	NA	NA
	RS(18)03B		35 44 43,965	57 22 17,260	0,83	1,57	83,86	16,14	19,60	7,00	19,60	NA	NA	NA	NA
	RS(18)03C		35 44 44,73S	57 22 17,220	0,81	1,72	92,89	7,11	12,60	6,00	15,00	NA	NA	NA	NA
	RS(18)04		35 45 13,16S	57 21 48,500	0,06	1,15	94,21	5,79	8,40	6,00	17,00	NA	NA	NA	NA
	RS(18)05		35 45 10,90S	57 21 46,500	0,03	1,24	77,76	22,24	8,30	6,00	15,80	NA	NA	NA	NA
	RS(18)00		35 44 56 205	57 21 44,000	1.07	0,08	81 19	28,05	9,10 6.80	6,00	15,00	NA	NA	NA	NA
	RS(18)08		35 44 48,825	57 21 54,490	0,38	1,27	83,08	16,92	13,70	7,00	16,80	NA	NA	NA	NA
DC	RS(18)09		35 44 41,70S	57 22 9,400	0,6	1,14	93,09	6,91	9,40	6,00	17,50	NA	NA	NA	NA
1.3	RS(18)10		35 44 47,10S	57 22 38,910	1,35	1,29	87,84	12,16	NA	NA	NA	NA	NA	NA	NA
	RS(19)01-1		35 45 14,225	57 21 48,8150	0,05	1,4	100,00	0,00	10,20	6,00	19,50	348,50	0,23	6,13	12,26
	RS(19)04-1 PS(10)07-1		35 44 59,0645	57 21 45,0720	0,01	0,03	/3,85	26,15	10,70	6,00	23,00	809,80	0,18	7,63	15,26
	RS(19)11		35 44 43,7645	57 22 6,7070	1.14	0.51	99.18	0.82	8,50 NA	7,00 NA	22,00 NA	342.10	0,20	6.88	13,75
	RS(19)13		35 44 46,5365	57 22 35,2190	1,29	2,21	91,74	8,26	11,60	6,00	25,50	538,10	0,04	6,89	13,78
	RS(17)M1	x	35 45 12,46S	57 22 11,990	0,64	1,84	81,78	18,22	NA	NA	NA	1265,00	0,25	2,18	14,45
	RS(17)M2	х	35 44 45,95S	57 22 1,050	0,31	1,8	94,80	5,20	12.5	7,00	20.5	1039,00	0,25	2,16	13,02
	RS(17)M3	x	35 44 46,76S	57 22 25,830	0,93	2,12	85,51	14,49	1,00	8,00	19,00	1038,00	0,26	2,28	12,07
	Desviación						87,66	12,34 8 10	3 94	0,18	3 78	787,83	0,20	5,32 2.66	13,93
	C15(19)03		35 58 17,945	57 23 25,5480	1,85	0,7	88,68	11,32	5,00	6,00	17,70	846,60	0,00	6,14	12,28
	C15(19)09		35 58 19,056S	57 24 20,0160	3,28	2,12	85,00	15,00	4,70	7,00	21,50	1459,00	0,13	5,38	10,76
	C15(19)11		35 58 20,496S	57 25 8,1110	4,44	1,49	96,66	3,34	4,60	7,00	22,00	234,20	0,21	5,07	10,13
	C15(19)13		35 58 22,1525	57 26 1,2480	5,84	1,55	95,80	4,20	4,80	7,00	20,40	184,10	0,23	2,18	4,36
	C15(18)01 C15(18)02	×	35 58 17,755	57 23 21,100	1,75	1,/	97,26	2,74	NA 2.40	NA 6.00	NA 20.40	NA NA	NA NA	NA NA	NA NA
	C15(18)02	x	35 58 17,80S	57 23 30.030	1,93	0.6	79.32	20.68	2,00	6.00	23,50	NA	NA	NA	NA
	C15(18)04	x	35 58 18,30S	57 23 39,100	2,12	1,2	76,40	23,60	2,30	7,00	22,50	NA	NA	NA	NA
	C15(18)05		35 58 18,30S	57 23 47,000	2,39	0,93	92,37	7,63	2,40	7,00	21,40	NA	NA	NA	NA
	C15(18)06		35 58 18,60S	57 24 6,500	2,98	1,96	91,65	8,35	2,90	7,00	20,80	NA	NA	NA	NA
	C15(18)07		35 58 19,70S	57 24 37,800	3,65	1,95	96,78	3,22	2,40	7,00	18,60	NA	NA	NA	NA
	C15(18)08		35 58 20,103	57 25 13 600	3,90 4.49	2,08	95,29	9.79	2,50	7.00	18,00	NA	NA	NA	NA
	C15(18)10		35 58 21,10S	57 25 20,200	4,7	1,79	59,81	40,19	2,60	7,00	18,10	NA	NA	NA	NA
	C15(18)11		35 58 21,30S	57 25 36,400	5,12	2,01	56,85	43,15	2,20	6,00	17,90	NA	NA	NA	NA
C15	C15(18)12		35 58 22,60S	57 26 3,900	5,78	2,21	21,62	78,38	2,80	7,00	17,50	NA	NA	NA	NA
	C15(18)13		35 58 22,50S	57 26 14,800	6,07	2,32	89,85	10,15	2,60	7,00	17,20	NA	NA	NA	NA
	C15(18)14 MS01(14)	•	35 58 23,905	57 26 51,500	6,98	2,61	11,41	88,59	2,40 NA	7,00 NA	15,90 NA	NA NA	NA NA	NA NA	NA NA
	MS02(14)	x	35 58 11.60S	57 23 24,600	0,45	1,51	87.31	12.69	NA	NA	NA	NA	NA	NA	NA
	MS03R(14)	x	35 58 12,50S	57 24 15,600	1,99	1,85	84,73	15,27	NA	NA	NA	NA	NA	NA	NA
	MS04(14)	x	35 58 13,10S	57 24 30,200	2,32	2,16	31,80	68,20	NA	NA	NA	NA	NA	NA	NA
	MS05(14)	x	35 58 13,20S	57 24 51,280	2,92	1,89	59,50	40,50	NA	NA	NA	NA	NA	NA	NA
	MS1(15)	x	35 58 20,90S	57 23 22,000	1,78	1,35	95,82	4,18	NA	NA	NA	NA	NA	NA	NA
	MS3(15)	x	35 58 21,403	57 23 23,000	1,82	2,17	94 79	5 21	NA	NA	NA	NA	NA	NA	NA
	MS4(15)	x	35 58 21,505	57 23 28,400	1,92	1,82	95,21	4,79	NA	NA	NA	NA	NA	NA	NA
	MS5(15)	x	35 58 21,80S	57 23 34,300	2,02	1,83	94,12	5,88	NA	NA	NA	NA	NA	NA	NA
	MS6(15)	x	35 58 22,20S	57 24 34,700	2,57	2,28	67,68	32,32	NA	NA	NA	NA	NA	NA	NA
	Media						78,30	21,70	3,02	6,71	19,53	680,98	0,18	4,69	9,38
	Desviación PR(19)01	v	36 17 /3 3699	56 46 6 5620	0	0	23,19	23,19	1,03	2,18	2,18	599,79 NA	0,05 NA	1,/3 NA	3,47 NA
	PR(19)02	x	36 17 55.8965	56 46 46.3080	-0,36	0	40.76	59.24	24,40	7,00	21,50	NA	NA	NA	NA
	PR(19)03	x	36 18 16,0925	56 46 47,7480	-0,34	0	3,98	96,02	15,00	7,00	25,00	NA	NA	NA	NA
PR	PR(19)04	х	36 18 14,292S	56 46 47,3520	-0,36	0	33,86	66,14	NA	NA	NA	NA	NA	NA	NA
	PR(19)05	х	36 18 12,816S	56 46 3,7910	0,81	0	13,25	86,75	20,60	7,00	27,50	NA	NA	NA	NA
	Media						16,30	83,70	19,33	7,00	25,58				
	Desviación						16,76	16,76	4,09	0,00	3,06				

Tabla 4.1. Localización geográfica, distancia a la costa, elevación, granulometría, conductividad, pH, temperatura, fósforo total (PT), nitrógeno total (NT), carbono total (CT), materia orgánica (MO). Las muestras en las cuales se realizó análisis de foraminíferos se indicado con (X) y en las que no se realizó dicho análisis se dejó el espacio en blanco.

Figura 4.1. Ubicación geográfica de las muestras actuales en las cuatro zonas analizadas de Norte a Sur: R36 (Ruta 36) (A), RS (Río Salado) (B), C15 (Canal 15) (C) y (D.) y PR (Punta Rasa) (E). Los puntos amarillos representan las muestras en las que se pudo analizar la fauna de foraminíferos. Los puntos rojos representan las muestras en las que no se pudo analizar la fauna de foraminíferos.

Temperatura

Los valores de temperatura de las muestras corresponden a la estación de verano (noviembre-enero). Los resultaron entre 12 y 28,3°C. Se observó que las temperaturas más altas correspondieron a las muestras localizadas en PR: PR(19)01 y PR(19)04, y las temperaturas más bajas a muestras localizadas en RS: RS(18)03A, RS(18)03C, RS(18)01 y RS(18)02 (Fig. 4.2).

Conductividad

Los valores de conductividad del agua in situ fueron entre 0,3 y 24,4 µsm. Se determinó que las muestras localizadas en R36 y C15 presentaron valores más bajos de conductividad (0,3 a 5 µsm) que las muestras localizadas en RS y PR (6,8 a 24,4 µsm); (Fig. 4.2).

рΗ

El pH del agua de todas las muestras varió entre 5 y 8. Más del 90% de las muestras presentaron valores entre 7 y 6. En 3 muestras localizadas en RS (RS(18)01, RS(18)02, RS (18)03) los valores de pH fueron de 5; mientras que una muestra en RS (RS(17)M3) presentó un valor de pH de 8 (Fig. 4,2).

Nitrógeno total

Los valores de nitrógeno total (NT) en el sedimento variaron entre 0,04 y 0,4 %. Los valores más altos de NT se determinaron en R36, a excepción de la muestra R36M3. Los valores de NT más bajos se obtuvieron en RS, específicamente en las muestras RS(19)13. En promedio se observó que los valores más altos de este parámetro se alcanzaron en R36 y los más bajos en C15, mientras que en RS se obtuvieron valores medios (Fig. 4.3).

Figura 4.2. Valores de distancia a la costa (Km), elevación (m), temperatura del agua (°C), conductividad del agua (µsm) y pH del agua en las muestras superficiales.

Fósforo total

El fósforo total (PT) en el sedimento varió entre 184,1 y 3 866 μg/g d.w (Peso seco). El valor más alto correspondió a la muestra R36(17)M3 y los más bajos a las muestras C15(19)13 y C15(19)12, localizadas en C15; (Fig. 4.3).

Materia orgánica

El contenido de materia orgánica (MO) en el sedimento varió entre 4,4 y 18,5%. Los valores más altos se determinaron en RS y R36 mientras que los valores más bajos en C15 (Fig.4.3, Tabla 4.1).

Carbono total

El porcentaje de carbono total (CT) en el sedimento varió entre 2,2 y 8,4%. Los valores más altos se obtuvieron principalmente en RS y los más bajos en RS, C15 y R36 (Fig.4.3, Tabla 4.1).

Figura 4.3. Valores de distancia a la costa (km), elevación (m), arena (%), lodo (%), materia orgánica (%), fósforo total (µg/g d.w), nitrógeno total (%) y carbono total (%).

Análisis Multivariado 1

A partir del análisis de correlación de Spearman (*rho*) de las variables ambientales: distancia a la costa, elevación, porcentaje de lodo, porcentaje de arenas, conductividad, pH y temperatura (Tabla 4.2) se determinaron correlaciones positivas entre la distancia a la costa y la elevación (*rho=* 0,5), la distancia a la costa y la conductividad (*rho=-0,50*) y el pH y la temperatura (*rho=-*0,41). El porcentaje de lodo y el porcentaje de arena presentaron una correlación negativa (*rho=-*1). En base a estos resultados, se eliminó el porcentaje de arena de la matriz de variables ambientales para los análisis multivariados.

	Distancia a la costa	Elevación	Limo	Arena	Conductividad	рН	Temperatura
Distancia a la costa		0,5	0,17	-0,17	-0,5	0,14	0,29
Elevación			0,11	-0,11	-0,4	0,18	0,18
Limo				-1	0,0001	-0,16	-0,28
Arena					-0,0001	0,16	0,28
Conductividad						-0,2	0,00
рН							0,41
Temperatura							

Tabla 4.2. Coeficientes de correlación de Spearman, en azul se muestran las correlaciones positivas y en rojo se indican las correlaciones negativas.

Para el primer análisis de componentes principales (ACP) se empleó la matriz conformada por 58 muestras y 6 variables ambientales (conductividad, temperatura, elevación, pH, distancia a la costa y porcentaje de lodo).

Los dos primeros componentes explican el 65,72% de la varianza total de los datos. El primer eje explica el 37,5% de la varianza total de las muestras y el segundo eje el 28.1% de la varianza total de las muestras. La elevación, la conductividad y la distancia a la costa son las variables que tienen mayor contribución en el eje 1. Mientras que el pH y la temperatura son las variables que más contribuyen en el eje 2. Los resultados se muestran en un gráfico bidimensional (Fig. 4.4) en el que se puede observar que las muestras se distribuyeron a lo largo del eje 1 en el que se reconocen 3 zonas **(Z)** principales:

La zona 1 **(Z1)** está integrada por 4 muestras localizadas en PR (PR(19)01, PR(19)02, PR(19)03, PR(19)05) con valores de pH igual a 7 en todas las muestras, este grupo presenta valores de conductividad los más altos respecto al total de las muestras entre 15 y24,4 µsm, la temperatura determinada estuvo entre los 21,5 y 28,3°C. Por otro lado, el porcentaje de arenas fue mayor al registrado en el total de las muestras variando entre 59,2 y96,2%.

La zona 2 **(Z2)** incluye 14 muestras principalmente correspondientes a RS (RS(18)01, RS(18)02, RS(18)03A, RS(18)03B, RS(18)03C, RS(18)04, RS(18)05, RS(18)06, RS(18)07, RS(18)08, RS(18)09, RS(19)01-1, RS(19)04-1, RS(19)07-1) y 1 de C15 (C15(19)03). Los valores de conductividad van desde 5 µsm a 12,5 µsm, la temperatura varió entre 12 y25,5 °C, el porcentaje de lodos tomó valores entre 71,9% y el 100% mientras que el pH fue variable tomando valores entre 5 y 7.

Figura 4.4. Diagrama bidimensional del análisis de componentes principales (ACP) basado en los valores de temperatura (TEMP), Conductividad (COND), porcentaje de lodos (LOD), Elevación (ELE), distancia a la costa (DIS) y pH (pH), analizados para las cuatro áreas de estudio.

La zona 3 **(Z3)** está conformada por 13 muestras principalmente provenientes de C15 (C15(18)14, C15(18)13, C15(18)12, C15(18)11, C15(18)09, C15(18)10, C15(18)08, C15(18)07, C15(18)06, C15(18)05, C15(19)09, C15(19)11, C15(18)04), 1 de R36 (R36(17)M2) y 1 de RS: (RS(17)M3).En estas muestras se obtuvieron los valores mas bajos de conductividad de la zona, entre 1 μ sm a 4,7 μ sm. Por otro lado, la temperatura presentó valores entre 25,5 y 15,9 °C, mientras que el porcentaje de lodos varió entre 11,4 % y el 96,8 %. Por último, los valores de pH estuvieron entre 6 y 8.

Análisis Multivariado 2

A partir del análisis de correlación de Spearman (rho) de las variables ambientales fósforo total, nitrógeno total, carbono total y materia orgánica, se observó una correlación negativa entre el carbono total y el nitrógeno total (rho = -0,48); (Tabla 4.3).

Para la aplicación del Análisis de Componentes Principales (ACP), se empleó la segunda matriz formada por 17 muestras y otras 4 variables ambientales (carbono total, nitrógeno total, fósforo total y materia orgánica).

Los resultados de este análisis sugieren que los dos primeros componentes explican el 70 % de la varianza total de los datos. Por su parte, el primer eje explica el 37,5 % de la varianza total y el segundo eje explicaría el 32,5% de la varianza total. El carbono total y el nitrógeno total son las variables que tienen mayor contribución en el eje 1, mientras que la materia orgánica es la variable que más contribuye al eje 2. Se pudo observar que las muestras se distribuyen sobre el eje 1, formado dos grupos principales que se muestran en un gráfico bidimensional (Fig. 4.5) compuesto por muestras de diferentes zonas.

	PT	NT	СТ	MO
PT		0,29	-0,28	0,18
NT			-0,48	0,36
СТ				0,3

Tabla 4.3 Coeficientes de correlación de Spearman, en azul se muestran las correlaciones positivas y en rojo las correlaciones negativas. fósforo total (PT), nitrógeno total (NT), carbono total (CT) y materia orgánica. (MO).

El primer grupo (**G1**) está conformado por 7 muestras provenientes de R36 (R36M4, R36M2, R36M5 y RS, RSM2, RSM1, R36M1 y RSM3). Los valores de MO obtenidos variaron entre 12,0 y 18,5% y el CT entre 2,2 y 4,6 %. El nitrógeno varió entre 0,3 a 0,4%, mientras que el PT tomó valores entre 918,5 y 1 265 μg/g d.w.

El segundo grupo **(G2)** está conformado por 8 muestras provenientes de RS (RS(19)13, RS(19)11, RS(19)04-1, RS(19)01-1, RS(19)07-1) y C15 (C15(19)03,C15(19)09 y C15(19)11). Los valores de MO determinados fueron entre 10,1 y 16,9 %, el CT tomó valores entre 5,1 a 8,4 %. El NT entre 0,04 a 0,3 % y el contenido de PT entre 234,2 y 1 459,0 μ g/g d.w.

Figura 4.5. Diagrama bidimensional del análisis de componentes principales (ACP) donde se relaciona los sitios muestreados y las variables ambientales, fósforo total (PT), nitrógeno total (NT), carbono total (CT) y materia orgánica. (MO).

4.2.2 Análisis de foraminíferos

Los análisis realizados tienen como objetivo explorar la distribución y abundancia de los foraminíferos bentónicos en las muestras superficiales en la Bahía Samborombón y los posibles procesos tafonómicos que pueden influenciar en la preservación de las conchillas. Es necesario aclarar que los análisis no reflejan las características de la comunidad, sino del ensamble de superficie. Esto implica que la diversidad no solo refleja la ecología de la comunidad original, sino también la acción de distintos procesos sedimentarios.

4.2.2.1 Tafonomía

A partir del análisis tafonómico se pudo observar que las muestras en general presentaron un buen grado de preservación (Grupo Tafonómico A). Las muestras poseen entre el 60,1 % y el

Página 56 | 194

100% de foraminíferos enteros o con la última cámara rota (Tabla 4.4), los porcentajes más bajos se localizaron en las muestras PR19(04), PR19(05) y PR19(02).

Las conchillas con coloración marrón o negra (Grupo Tafonómico B) representaron entre 0 y el 16,7% del total de individuos (Tabla 4.4). Los porcentajes más altos se localizaron en **C15** (MS4(15), MS1(14), MS2(14), MS3(14)) y en **R36** (R36(17)M3, R36(17)M2, R36(17)M1).

Se observaron foraminíferos fragmentados (Grupo Tafonómico C) en todas las muestras, que corresponden entre el 0 y el 27% del total de individuos en cada muestra (Tabla 4.4); sin embargo, las muestras que presentaron mayor porcentaje de conchillas fragmentadas se localizaron en **PR** (PR (19)01, PR(19)02, PR(19)03, PR(19)04, PR(19)05) y **C15**(MS3(15)).

Finalmente, las conchillas que presentaron signos de retrabajo o abrasión (Grupo Tafonómico D) fueron entre el 0,2 y el 27,3 % (Tabla 4.4), el mayor porcentaje se observó en **PR (**PR (19)02, PR (19)04, PR(19)05), **R36** (R36(17)M1, R36(17)M3,R36(17)M4) y **C15** (C15(18)01) (Fig. 4.6).

En base al análisis de correlación de Spearman (Anexo III) se determinó que el grupo tafonómico A presentó una correlación positiva con la distancia a la costa y la elevación (rho = 0,41 y 0,44 respectivamente). El grupo tafonómico B presentó una correlación negativa con el porcentaje de materia orgánica (rho = -0,79). El grupo tafonómico C presentó una correlación negativa con la elevación (rho = -0.48) y el grupo tafonómico D presentó una correlación negativa con la distancia a costa y el porcentaje de lodos (rho = -0,64 y -0,46 respectivamente) y positiva con el porcentaje de arenas (rho = 0.46).

	MS01(14)	MS02(14)	MS03(14)	MS04(14)	MS05(14)	MS1(15)	MS2(15)	MS3(15)	MS4(15)	MS5(15)	MS6(15)	PR(19)01	PR(19)02	PR(19)03
Ammonia parkinsoniana	24,6	3,8	2,0	1,8	3,3	0,0	0,5	0,9	15,6	24,1	1,3	3,9	0,4	0,7
Ammonia spp	1,1	0,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	0,0	0,0
Ammonia tepida	0,0	0,0	4,0	0,0	0,0	8,6	0,0	0,0	8,3	8,6	0,0	2,7	0,0	0,0
Arenoparrella mexicana	8,6	8,4	48,0	0,0	0,0	205,7	0,0	22,8	0,0	62,1	0,0	0,0	0,0	0,0
Astrononion sp1	0,0	1,0	35,0	6,4	0,0	511,4	0,5	100,9	0,9	848,3	0,0	0,0	0,0	0,0
Buccella peruviana	5,1	0,7	18,0	13,8	1,6	45,7	0,5	0,0	3,/	12,1	11,4	51,9	2,8	4,4
Cribroelphidium aunteri	194.9	2.4	122.0	75.2	70.1	931.4	100.0	10.5	1.8	1.7	306.3	1.6	0.0	1.4
Cribroelphidium poeyanum	16,6	4,9	100,0	13,8	6,3	0,0	0,0	7,0	0,0	0,0	70,9	7,4	0,3	0,8
Elphidium discoidale	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,2	0,3	0,0
Elphidium sp4	20,0	1,0	27,0	11,0	0,0	85,7	0,0	0,0	0,0	0,0	6,3	0,0	0,0	0,0
Elphidium sp9	11,4	0,0	43,0	39,4	0,0	0,0	6,3	0,0	0,0	0,0	32,9	0,0	0,0	0,0
Elphidium spp	2,9	4,2	0,0	10,1	0,0	0,0	3,2	0,0	0,0	1,7	1,3	0,0	0,0	0,0
Jadammina polystoma	9,7	3,1	29,0	3,7	0,0	168,6	13,7	10,5	48,6	69,0	0,0	0,0	0,0	0,0
Miliammina Jusca	0,0	0,0	5,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	12.6	0,0	0,0
Quinqueloculina natagonica	0,0	0,0	7.0	0,0	0,0	2,5	0,0	0,5	0,0	0.0	0,0	6.2	0,0	1.4
Quinqueloculina seminulum	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.6	0,1	0.0
Quinqueloculina spp	0,0	0,0	0,0	0,0	0,0	2,9	0,0	0,0	0,0	0,0	0,0	37,6	2,1	1,2
Trochammina inflata	0,0	9,8	6,0	8,3	0,0	105,7	11,6	11,4	23,9	0,0	0,0	0,0	0,0	0,0
Trochammina ochracea	0,0	0,7	0,0	0,9	0,0	2,9	0,0	0,0	1,8	0,0	1,3	0,0	0,0	0,0
Trochammina spp	0,0	0,0	0,0	0,0	0,3	51,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Abundancia total (ind/gr de sedimento)	370,9	49,0	651,0	598,2	90,5	2585,7	138,4	164,9	141,3	1046,6	538,0	145,3	7,1	10,2
Agiutinados (%)	4,9	23,6	12,6	0,6	0,0	14,5	9,9	20,2	34,4	12,5	0,0	0,8	0,0	0,0
Hisling (%)	0,2	55.0	2,0	97.7	99.6	70.1	81 7	7,4	18,2	87.0	0,2	47,7	55,2	25,0
Epifaunal (%)	2.8	36.9	7.7	2.5	0.4	18.7	19.1	55.3	58.3	57.9	0.2	51,5	49.0	26.7
Infaunal (%)	97,2	63,1	92,3	97,5	99,6	81,3	80,9	44,7	41,7	42,1	99,8	48,6	51,0	73,3
BFOI	-49,0	-49,1	-49,0	-49,0	-49,0	-49,0	-49,0	-49,0	-49,1	-49,0	-49,0	-49,0	-49,0	-49,0
Riqueza de especies (S)	13,0	18,0	28,0	18,0	9,0	26,0	11,0	8,0	15,0	14,0	10,0	24,0	12,0	8,0
Dominancia (D)	0,3	0,1	0,1	0,4	0,6	0,2	0,5	0,4	0,2	0,7	0,4	0,2	0,3	0,2
Shannon (H)	1,6	2,4	2,3	1,4	0,9	1,9	1,0	1,3	2,0	0,8	1,3	2,0	1,7	1,7
Alpha de Fisher	2,6		6,0	3,5	2,5	4,0	2,8	1,8	4,2	2,3	1,7	8,2	0,0	16,5
Grupo A (%)	88,5	87,9	93,5	96,3	96,7	91,4	89,4	76,6	38,3	86,3	98,4	/0,/	47,1	81,0
Grupo B (%)	6,2	2,9	1,7	0,0	0,0	0,4	1,1	0,0	44,2	12 5	0,0	0,3	0,0	14.2
Grupo D (%)	0.2	9,5	4,0	3,7	0.0	0,0	9,5	23,4	17,5	13,5	1,0	20,0	17.6	4,5
Amorfos (%)	1.1	1.4	0.0	0.0	0.0	3.5	0.8	0.0	0.0	0.0	0.0	0.0	2.0	0.0
Vivos (%)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,5	2,0	0,0
IAE	7.4	19.1	1.3	0.3	3.8	0.6	0.5	4.8	48,1	76.0	0.2	38,3	37.5	23.5
	.,.	==)=	1.		- /-		=)=	.).5					0.70	- 1-
	.,,.	/-					0,0	.,=			-7			1
	PR19(04)	PR19(05)	R36(19)M5	R36(19)M4	R36(19)M3	R36(19)M2	R36(19)M1	C15(18)01	C15(18)02	C15(18)03	C15(18)04	RS(17)M1	RS(17)M2	RS(17)M3
Ammonia parkinsoniana	PR19(04) 0,3	PR19(05) 0,3	R36(19)M5	R36(19)M4 0,9	R36(19)M3 77,4	R36(19)M2 174,9	R36(19)M1 66,5	C15(18)01 0,0	C15(18)02	C15(18)03 0,0	C15(18)04	RS(17)M1 3,0	RS(17)M2 90,5	RS(17)M3 35,3
Ammonia parkinsoniana Ammonia spp Ammonia tenida	PR19(04) 0,3 0,0	PR19(05) 0,3 0,0	R36(19)M5 0,0 0,0	R36(19)M4 0,9 0,0	R36(19)M3 77,4 0,0 7.6	R36(19)M2 174,9 0,0 48.1	R36(19)M1 66,5 0,3	C15(18)01 0,0 0,0	C15(18)02 0,7 0,0	C15(18)03 0,0 0,9 0.0	C15(18)04 1,5 0,0	RS(17)M1 3,0 0,0	RS(17)M2 90,5 3,7 13.2	RS(17)M3 35,3 0,6
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenopartella mexicana	PR19(04) 0,3 0,0 0,0	PR19(05) 0,3 0,0 0,0	R36(19)M5 0,0 0,0 0,0 0,0	R36(19)M4 0,9 0,0 0,0 11 5	R36(19)M3 77,4 0,0 7,6 0,2	R36(19)M2 174,9 0,0 48,1	R36(19)M1 66,5 0,3 1,0	C15(18)01 0,0 0,0 0,0 54.7	C15(18)02 0,7 0,0 0,7 0,0	C15(18)03 0,0 0,9 0,0	C15(18)04 1,5 0,0 0,5 1,5	RS(17)M1 3,0 0,0 1,1	RS(17)M2 90,5 3,7 13,2 0,5	RS(17)M3 35,3 0,6 10,4 0.6
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenaparella mexicana Astrononion sol	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M4 0,9 0,0 0,0 11,5 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,0	R36(19)M2 174,9 0,0 48,1 0,0 0.0	R36(19)M1 66,5 0,3 1,0 0,0 0,0	C15(18)01 0,0 0,0 0,0 54,7 0,0	C15(18)02 0,7 0,0 0,7 0,0 12,7	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1.5	RS(17)M1 3,0 0,0 1,1 0,0 0.0	RS(17)M2 90,5 3,7 13,2 0,5 0,0	RS(17)M3 35,3 0,6 10,4 0,6 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 3,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,9	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0	C15(18)01 0,0 0,0 0,0 54,7 0,0 5,7	C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,9	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0	RS(17)M2 90,5 3,7 13,2 0,5 0,0 0,0	RS(17)M3 35,3 0,6 10,4 0,6 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 3,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,9 0,0	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,2 0,8	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 0,0 1,4	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0	C15(18)01 0,0 0,0 0,0 54,7 0,0 5,7 224,5	C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0 128,2	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,9 3,6	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0	RS(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,5	RS(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,8
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium gunteri	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 3,0 0,0 0,5	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,9 0,0 0,1	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,0 0,2 0,8 5,2	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 1,4 5,1	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 2,7	C15(18)01 0,0 0,0 54,7 0,0 5,7 224,5 296,2	C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0 128,2 95,8	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,9 3,6 1,8	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0	RS(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,5 5,8	RS(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,8 2,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium poeyanum	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 3,0 0,0 0,5 1,3	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,4	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,8 5,2 0,6	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 0,0 1,4 5,1 3,4	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 2,7 0,7	C15(18)01 0,0 0,0 0,0 54,7 0,0 5,7 224,5 296,2 150,9	C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0 128,2 95,8 27,5	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,9 3,6 1,8 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0	RS(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,5 5,8 0,0	RS(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,8 2,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium gexcavatum Cribroelphidium gunteri Cribroelphidium gexpanum Elphidium discoidale	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,4 0,4 0,0	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 0,9 0,0 0,0 111,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,2 0,2 0,2 0,8 5,2 0,6 0,0	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 2,7 0,7 0,7 0,0	C15(18)01 0,0 0,0 54,7 0,0 5,7 224,5 296,2 150,9 0,0	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,9 3,6 1,8 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	RS(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0	RS(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,8 2,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium exeavatum Cribroelphidium poeyanum Elphidium discoidale Elphidium sp2	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,5 1,3 0,5 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,1 0,4 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 0,9 0,0 0,0 111,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,8 5,2 0,6 0,0 0,0 0,0 0,0	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0 1,7 2,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 2,7 0,7 0,7 0,7 0,0 0,0 3,0 2,0	C15(18)01 0,0 0,0 54,7 0,0 5,7 224,5 296,2 150,9 0,0 94,3 4,5	C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0 128,2 95,8 27,5 0,0 0,0 0,0 29,0	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,9 3,6 1,8 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 0,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	RS(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 2,1	RS(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,8 2,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium peruviana Cribroelphidium gunteri Cribroelphidium poyanum Elphidium sp4 Elphidium sp4 Elphidium sp9 Elphidium sp0	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,5 1,3 0,5 0,0 0,0 0,0 0,3	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,4 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,8 5,2 0,6 0,0 0,0 0,0 0,0 0,0	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 1,4 5,1 3,4 0,0 1,7 0,0 1,7 0,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,7 0,7 0,7 0	C15(18)01 0,0 0,0 54,7 0,0 5,7 224,5 296,2 150,9 0,0 94,3 41,5 79,2	C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 3,6 1,8 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 0,5 15,5 0,0	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0	RS(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 2,1 0,0 0,5	RS(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,8 2,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,7
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium pevanum Cribroelphidium poyenum Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Indammina polystona	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,5 1,3 0,5 0,0 0,0 0,0 0,3 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 0,9 0,0 111,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,8 5,2 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M2 174,9 0,0 48,1 0,0 48,1 0,0 1,4 5,1 3,4 0,0 1,7 0,0 0,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 2,7 0,7 0,7 0,7 0,7 0,3 0,0 0,3 0,0 0,0 1	C15(18)01 0,0 0,0 54,7 0,0 5,7 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5	C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 5,6	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,9 3,6 1,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 2,0 25,0 16,0 3,0 0,5 0,5 15,5 0,0 0,0	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0	RS(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 2,1 0,0 0,5 0,5	RS(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,8 2,0 0,0 0,8 2,0 0,0 0,0 0,8 0,0 0,0 0,8 0,0 0,0 0,0 0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium peruviana Cribroelphidium pervanum Elphidium sp4 Elphidium sp9 Elphidium sp9 Jadamming polystoma Miliamning fusca	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,5 1,3 0,5 1,3 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 <td>R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R36(19)M3 77,4 0,0 7,6 0,2 0,2 0,8 5,2 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>R36(19)M2 174,9 0,0 48,1 0,0 48,1 0,0 1,4 5,1 3,4 0,0 1,7 0,0 0,0 0,0</td> <td>R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,7 0,7 0,7 0,7 0,0 0,3 0,0 0,1 0,0</td> <td>C15(18)01 0,0 0,0 54,7 0,0 5,7 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0</td> <td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 28,9 1,4 5,6 1,4</td> <td>C15(18)03 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 15,5 0,0 0,0 0,0</td> <td>R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>RS(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 0,5 0,5 0,5 0,5 0,5 0,5</td> <td>RS(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,8 2,0 0,0 0,0 0,0 0,0 0,0 0,0 1,7 0,0 0,0</td>	R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M3 77,4 0,0 7,6 0,2 0,2 0,8 5,2 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M2 174,9 0,0 48,1 0,0 48,1 0,0 1,4 5,1 3,4 0,0 1,7 0,0 0,0 0,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,7 0,7 0,7 0,7 0,0 0,3 0,0 0,1 0,0	C15(18)01 0,0 0,0 54,7 0,0 5,7 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 28,9 1,4 5,6 1,4	C15(18)03 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 15,5 0,0 0,0 0,0	R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	RS(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 0,5 0,5 0,5 0,5 0,5 0,5	RS(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,8 2,0 0,0 0,0 0,0 0,0 0,0 0,0 1,7 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium sexvautum Cribroelphidium posvanum Elphidium gos Elphidium sp4 Elphidium sp9 Elphidium sp9 Jadammina polystoma Miliammina fusca Quinqueloculina milletti	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,5 1,3 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 57,7 2,0 0,0	R36(19)M4 0,9 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,8 5,2 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M2 174,9 0,0 48,1 0,0 0,0 1,4 5,1 3,4 0,0 1,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0	0.2 C15(18)01 0.0 0.0 0.0 0.0 5.7 224,5 296,2 150,9 0.0 94,3 41,5 79,2 7,5 0,0 0,0	C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0 128,2 95,8 27,5 0,0 0,0 0,0 0,0 28,9 1,4 5,6 1,4 4,9	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,9 3,6 1,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 0,5 15,5 0,0 0,0 0,0 0,0 0,5 15,5 0,0 0,0 0,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1	R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 5,5 0,0 0,0 0,5 0,5 0,5 0,0 0,0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium poeyanum Elphidium facoidale Elphidium sp4 Elphidium sp9 Elphidium sp9 Jadammina polystoma Miliammina fusca Quinqueloculina milletti Quinqueloculina pategonica	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,5 1,3 0,5 1,3 0,5 1,3 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0	R36(19)M4 0,9 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,6 0,0 0,0 0,1 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M2 174,9 0,0 48,1 0,0 48,1 0,0 1,1 5,1 3,4 0,0 1,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,2,7 0,7 0,7 0,0 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0.2 C15(18)01 0,0 0,0 0,0 0,0 5,7 224,5 296,2 150,9 0,0 94,3 41,5 79,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0 128,2 95,8 27,5 0,0 28,9 95,8 27,5 0,0 0,0 28,9 1,4 5,6 1,4 4,9 0,0	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 2,0 25,0 25,0 16,0 3,0 0,5 15,5 0,5 15,5 0,0 0,0 0,0 0,5 15,5 1,5 1	R5(17)M1 3,0 0,0 1,1 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 5,8 0,0 0,0 0,5 0,5 0,0 0,0 0,0 0,0 0,0 0,0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium gevanum Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Jadammina polystoma Miliammina fusca Quinqueloculina patagonica Quinqueloculina patagonica	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,5 1,3 0,5 1,3 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,8 5,2 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M2 174,9 0,0 48,1 0,0 0,0 1,4 5,1 3,4 0,0 1,7 0,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0.2 C15(18)01 0.0 0.0 5,7 224,5 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0 0,0 0,0 0,0 0,0	C15(18)02 0,7 0,0 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 5,6 1,4 4,9 0,0	C15(18)03 0,0 0,9 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 0,5 0,5 0,5 0,5 0,5 0,0 0,0 0,0 0	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 0,5 0,0 0,0 0,0 0,0 0,0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccello peruviana Cribroelphidium excavatum Cribroelphidium pevanum Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Jadammina polystoma Miliammino fusca Quinqueloculina milletti Quinqueloculina patgonica Quinqueloculina spp	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 (0) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M4 0.9 0.0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0	R36(19)M2 174,9 0,0 48,1 0,0 0,0 1,4 5,1 3,4 0,0 1,7 0,0	R36(19)M1 66,5 0,3 1,0 0,0	0.2 C15(18)01 0,0 0,0 0,0 54,7 0,0 5,7 224,5 296,2 150,9 94,3 41,5 79,2 7,5 0,0	C15(18)02 0,7 0,0 0,0 12,7 0,0 128,2 95,8 27,5 95,8 27,5 95,8 27,5 0,0 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 1,5 1,5 2,0 16,0 3,0 0,5 0,5 15,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M2 90,5 3,7 13,2 0,0 0,0 0,5 5,8 0,0 0,0 5,5 8,0,0 0,0 0,5 5,8 0,0 0,0 0,5 0,5 0,5 0,0 0,0 0,0 0,0 0,0	R5(17)M3 35,3 0,6 10,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium poeyanum Elphidium sp4 Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Uadammina polystoma Miliammina fusca Quinqueloculina patogonica Quinqueloculina seminulum Quinqueloculina seminulum Quinqueloculina spp Trochammina inflata	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 R36(19)M4 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M3 R36,119)M3 77,4 0,0 7,6 0,2 0,8 5,2 0,6 0,0	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0 1,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)01 0.0 0.0 0.0 0.0 57 224,5 296,27 150,9 0.0 94,3 41,5 79,2 79,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 1,5 1,5 1,5 1,5 2,0 25,0 16,0 0,5 15,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium gevanum Cribroelphidium gevanum Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Jadammina polystoma Miliammina fusca Quinqueloculina nuiletti Quinqueloculina patgonica Quinqueloculina spp Trochammina ochracea Trochammina othracea	PR19(04) 9R19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) PR19(05) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 (0,9) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M3 R36(19)M3 77,4 0,0 70,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 0,0 0,0 1,4 5,1 3,4 3,4 3,4 0,0 1,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M1 66,5 0,3 1,0 0,0	0.2 C15(18)01 0.0 0.0 0.5 7.5 224,5 296,2 150,9 0.0 94,3 41,5 79,2 7,5 0,0 17,0	C15(18)02 0,7 0,0 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 1,4 4,4 1,4	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 0,5 0,5 0,5 0,5 0,5 0,0 0,0 0,0 0	R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium goyanum Elphidium sp3 Elphidium sp9 Elphidium sp9 Elphidium sp9 Jadammina polystoma Miliammina fusca Quinqueloculina pariganica Quinqueloculina pariganica Quinqueloculina papt Trochammina inflata Trochammina chracea Trochammina spp	PR19(04) 9R19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 (0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 0,9 0,0	R36(19)M3 77,4 0,0 7,6 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0	R36(19)M2 174,9 0,0 48,1 0,0 48,1 0,0 1,4 5,1 3,4 0,0 1,7 0,0	R36(19)M1 66,5 0,3 0,0	0.2 C15(18)01 0,0 0,0 0,0 54,7 0,0 5,7 224,5 296,2 150,9 9,4,3 41,5 7,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 17,0 0,0	C15(18)02 0,7 0,0 0,0 12,7 0,0 128,2 95,8 27,5 8,2 7,5 8,2 7,5 8,2 7,5 8,2 7,5 1,4 1,4 1,4 1,4 1,4 1,4,1	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 1,5 2,0 16,0 3,0 0,5 0,5 15,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(7)M2 90,5 3,7 13,2 0,0 0,0 0,5 5,8 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 0,5 0,0 0,0 0,0 0,0 0,0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium poeyanum Cribroelphidium poeyanum Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Tadammina polystoma Millammina fusca Quinqueloculina milletti Quinqueloculina seninulum Quinqueloculina seninulum Quinqueloculina seninulum Quinqueloculina senon Trochammina inflata Trochammina ochacea Trochammina sp9	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,5 1,3 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M3 77,4 0,0 7,6 0,2 0,8 5,2 0,6 0,0	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0 1,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)01 0.0 0.0 0.0 0.0 5.7 224,5 296,2 150,9 0.0 94,3 41,5 79,2 75,0 0,0 0,0 0,0 0,0 3.8 0,0 0,0 17,0 0,0 996,2 100	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 0,0 1,4 4,1 339,4	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 1,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 15,5 0,0 0,0 0,0 4,5 1,0 0,0 0,0 1,0 0,0 1,5 0,0 0,5 1,5 1,5 0,0 0,5 1,5 1,5 1,5 0,0 0,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1	RS(17)M1 3.0 0.0 1,1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium poevanum Cribroelphidium govenum Elphidium sp4 Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Todammina polystoma Miliammina fusca Quinqueloculina patagonica Quinqueloculina seminulum Quinqueloculina sep Trochammina olflata Trochammina olflata Trochammina spp Abundancia total (ind/gr de sedimento) Aglutinados (%)	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0.0 0.7 0.0 4.3 91.8	R36(19)M4 R36(19)M4 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M3 R36(19)M3 77,4 0,0 7,6 0,2 0,8 5,2 0,6 0,0 0,2	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0 1,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0.0 0.0 57 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0</td> <td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td> <td>C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 0,5 0,5 0,5 0,5 0,5 0,0 0,0 0</td> <td>RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	32 C15(18)01 0.0 0.0 57 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 0,5 0,5 0,5 0,5 0,5 0,0 0,0 0	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia spja Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium gevanum Elphidium scavatum Elphidium sp4 Elphidium sp9 Elphidium sp9 Jadammina polystoma Miliamnina fusca Quinqueloculina patogonica Quinqueloculina patogonica Quinqueloculina spp Trochammina othrace Trochammina spp Abundancia total (ind/gr de sedimento) Ağlutinados (%)	PR19(04) PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 (0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 R36(19)M4 0,9 0,0 104,4 94,9 4,2	R36(19)M3 R36(19)M3 77,4 0,0 7,7,4 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0	R36(19)M2 174,9 0,0 0,0 0,0 0,0 0,1,4 5,1 3,4 0,0	R36(19)M1 66,5 0,3 0,0	12 C15(18)01 0,0 0,0 0,0 5,7 224,5 226,2 150,9 9,3 41,5 7,5 0,0 0,0 0,0 9,0 9,0 9,0 9,0 9,0 0,0 9966,2 6,3 2,1	C15(18)02 0,7 0,0 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 1,4 14,1 339,4 3,3 6,4	C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 0,5 0,5 0,5 0,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1	R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(7)/2 90,5 3,7 13,2 0,0 0,0 0,5 5,8 0,0 0,0 0,5 5,8 0,0 0,0 0,5 0,5 0,0 0,0 0,0 0,0 0,0 0,0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium poeyanum Cribroelphidium poeyanum Elphidium facoidale Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Tochamnina fusca Quinqueloculina patogonica Quinqueloculina seninulum Quinqueloculina seninulum Quinqueloculina seninulum Quinqueloculina senon Trochammina inflata Trochammina sp9 Abundancia total (ind/gr de sedimento) Aglutinados (%) Porcelanaceos (%) Halino (%)	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,5 1,3 0,5 1,3 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M3 R7,4 0,0 7,6 0,2 0,8 5,2 0,6 0,0 99,8	R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0 1,7 1,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M1 66,5 0,3 1,0 0,0 99,8	C15(18)01 0.0 0.0 0.0 0.0 57 224,5 296,2 150,9 0.0 94,3 41,5 79,2 75,0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 996,2 6,3 2,1 91,7	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 1,4 1,4 4,9 3,3 6,4 3,3 6,4 90,2	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 15,5 0,0 0,0 0,0 4,5 1,0 0,0 0,0 1,0 0,0 1,5 1,5 1,5 0,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium goveranm Elphidium sp4 Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Trochamnina fusca Quinqueloculina patogonica Quinqueloculina seminulum Quinqueloculina seminulum Quinqueloculina sep Trochammina offata Trochammina offata Trochammina offata Trochammina sp9 Abundancia total (ind/gr de sedimento) Aglutinados (%) Porcelanaceos (%) Hialino (%) Epifaunal (%)	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0.0 <td>R36(19)M4 R36(19)M4 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>R36(19)M3 R36(19)M3 77,4 0,0 76,6 0,2 0,8 5,2 0,6 0,0</td> <td>R36(19)M2 R74,9 174,9 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0 1,7 0,0 </td> <td>R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0,0 0,0 0,0 5,7 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0 1,7,0 0,2 6,3 2,1 91,7 3,8</td><td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td><td>C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td><td>1.3 C15(18)04 1,5 0,0 0,5 1,5 0,0 25,0 1,6 3,0 0,5 1,5,5 0,0 0,0 1,5,5 0,0 0,0 2,0 2,0 0,0 0,0 1,0 0,0 1,5 1,0 0,0 1,5 1,8 11,7 86,5 15,4</td><td>RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td><td>R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td><td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td></td>	R36(19)M4 R36(19)M4 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M3 R36(19)M3 77,4 0,0 76,6 0,2 0,8 5,2 0,6 0,0	R36(19)M2 R74,9 174,9 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0 1,7 0,0	R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0,0 0,0 0,0 5,7 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0 1,7,0 0,2 6,3 2,1 91,7 3,8</td> <td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td> <td>C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>1.3 C15(18)04 1,5 0,0 0,5 1,5 0,0 25,0 1,6 3,0 0,5 1,5,5 0,0 0,0 1,5,5 0,0 0,0 2,0 2,0 0,0 0,0 1,0 0,0 1,5 1,0 0,0 1,5 1,8 11,7 86,5 15,4</td> <td>RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	32 C15(18)01 0,0 0,0 0,0 5,7 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0 1,7,0 0,2 6,3 2,1 91,7 3,8	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0	1.3 C15(18)04 1,5 0,0 0,5 1,5 0,0 25,0 1,6 3,0 0,5 1,5,5 0,0 0,0 1,5,5 0,0 0,0 2,0 2,0 0,0 0,0 1,0 0,0 1,5 1,0 0,0 1,5 1,8 11,7 86,5 15,4	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium gevautum Cribroelphidium gevautum Elphidium sp3 Elphidium sp3 Elphidium sp9 Elphidium sp9 Jadammina polystoma Miliammina fusca Quinqueloculina smilietti Quinqueloculina patagonica Quinqueloculina patagonica Quinqueloculina spp Trochammina optracea Trochammina spp Abundancia total (ind/gr de sedimento) Aglutinados (%) Epifaunal (%)	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0.0 1.0 <td>R36(19)M4 R36(19)M4 0.9 0,0</td> <td>R36(19)M3 R37,4 0,0 77,4 0,0 70,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 9,2,7 0,2 0,0 99,8 0,0 100,0</td> <td>R36(19)M2 R74,9 0,0 100,0 100,0</td> <td>R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 57 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 17,0 0,0 996,2 1,1 3,8 96,2</td><td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 27,5 27,5 27,5 27,5 27,5 27,5 27,5</td><td>C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td><td>C15(18)04 C15(18)04 1,5 1,5 0,0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,0 0,5 0,0 0,5 0,0 0,0 4,5 1,0 0,0 2,0 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 1,7 86,5 15,5 1,5 1,7 86,5 1,5 1,5 1,5 1,7 86,5 1,5 1,5 1,7<td>R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td><td>R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 0,5 0,5 0,0 0,0 0,0 0,0</td><td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td></td></td>	R36(19)M4 R36(19)M4 0.9 0,0	R36(19)M3 R37,4 0,0 77,4 0,0 70,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 9,2,7 0,2 0,0 99,8 0,0 100,0	R36(19)M2 R74,9 0,0 100,0 100,0	R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 57 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 17,0 0,0 996,2 1,1 3,8 96,2</td> <td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 27,5 27,5 27,5 27,5 27,5 27,5 27,5</td> <td>C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>C15(18)04 C15(18)04 1,5 1,5 0,0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,0 0,5 0,0 0,5 0,0 0,0 4,5 1,0 0,0 2,0 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 1,7 86,5 15,5 1,5 1,7 86,5 1,5 1,5 1,5 1,7 86,5 1,5 1,5 1,7<td>R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td><td>R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 0,5 0,5 0,0 0,0 0,0 0,0</td><td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td></td>	32 C15(18)01 0.0 0.0 0.0 57 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 17,0 0,0 996,2 1,1 3,8 96,2	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 27,5 27,5 27,5 27,5 27,5 27,5 27,5	C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 C15(18)04 1,5 1,5 0,0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,0 0,5 0,0 0,5 0,0 0,0 4,5 1,0 0,0 2,0 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 1,7 86,5 15,5 1,5 1,7 86,5 1,5 1,5 1,5 1,7 86,5 1,5 1,5 1,7 <td>R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 0,5 0,5 0,0 0,0 0,0 0,0</td> <td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,5 0,5 0,5 0,0 0,0 0,0 0,0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium poeyanum Elphidium goeyanum Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp0 Sudammina polystoma Miliammina fusca Quinqueloculina patagonica Quinqueloculina milletti Quinqueloculina seminulum Quinqueloculina seminulum Quinqueloculina seminulum Quinqueloculina sep Trochammina ochracea Trochammina spp Abundancia total (ind/gr de sedimento) Aglutinados (%) Porcelanaceo (%) Hailino (%) Epifaunal (%) BFOU	PR19(04) 9R19(04) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 R36(19)M5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M4 R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M3 R36(19)M3 77,4 0,0 7,6 0,2 0,8 5,2 0,6 0,0	R36(19)M2 R36(19)M2 174,9 0,0 48,1 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0 1,7 1,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M1 R36(19)M1 66,5 0,3 1,0 0,0	C15(18)01 C15(18)01 0,0 0,0 0,0 57 224,5 296,2 150,9 0,0 94,3 41,5 79,2 75,0,0 996,2 6,3 2,1 91,7 3,8 96,2 -49,0	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 1,4 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 15,5 0,0 0,0 0,0 4,5 1,0 0,0 0,0 0,0 15,5 0,0 0,0 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 15,5 1,0 15,5 0,0 0,0 15,5 1,0 15,5 0,0 0,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M2 90,5 90,5 0,5 0,0 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium gunteri Cribroelphidium gunteri Elphidium sp4 Elphidium sp4 Elphidium sp5 Elphidium sp5 Elphidium sp5 Elphidium sp5 Uadammina polystoma Miliammina fusca Quinqueloculina seminulum Quinqueloculina seminulum Quinqueloculina sep Trochammina offata Trochammina offata Trochammina polystoma Abundancia total (ind/gr de sedimento) Ağlutinados (%) Porcelanaceos (%) Hialino (%) Epifaunal (%) Infaunal (%) BF01 Riqueza de especies (5)	PR19(04) 9R19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0.0	R36(19)M4 R36(19)M4 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M3 R36(19)M3 77,4 0,0 76,6 0,2 0,8 5,2 0,6 0,0 99,8 0,0 10,0 10,0	R36(19)M2 R36(19)M2 174,9 0,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	32 C15(18)01 0,0 0,0 0,0 5,7 224,5 296,2 150,9 0,0 94,3 41,5 79,2 7,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 17,0 996,2 6,3 2,1 91,7 3,8 96,2 49,0 17,0 17,0	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 4,9 0,2 8,9 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 0,5 15,5 0,0 0,0 15,5 0,0 0,0 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,4 84,6,5 15,5 15,4 84,6,5 15,4 84,6,5 15,4	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium gevautum Cribroelphidium gevautum Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Jadammina polystoma Miliammina fusca Quinqueloculina patgonica Quinqueloculina patgonica Quinqueloculina sp1 Trochammina ohracea Trochammina optacea Trochammina sp9 Abundancia total (ind/gr de sedimento) Ağlutinados (%) Porcelanaceos (%) Hialino (%) Epifaunal (%) BFOI Riqueza de especies (5) Dominancia (D)	PR19(04) PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	R36(19)M4 R36(19)M4 0.9 0.0 0.0 11,5 0.0 104.4 98.9 9.1 0.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 <td>R36(19)M3 R36(19)M3 77,4 0,0 70,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0</td> <td>R36(19)M2 R34(19)M2 174,9 0,0 0,0 0,0 0,0 0,0 0,1,4 5,1 3,4 0,0<td>R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 0.0 0.0 5.7 224,5 296,2 150,9 9.0 94,3 41,5 7,5 0.0 17.0 0.2 17.0 0.2</td><td>C15(18)02 0,7 0,0 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 1,4 1,4 339,4 3,3 6,4 90,2 21,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td><td>C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td><td>1 C15(18)04 1,5 1,5 0,0 0,5 1,5 2,0 25,0 16,0 3,0 5,5 0,0 0,0 4,5 1,5 0,0 0,0 4,5 1,0 0,0 2,0 0,0 1,5 0,0 1,5 0,0 1,5 1,0 0,0 1,5 0,0 1,5 1,7 8,6,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,6 1,7 8,6,5 1,5</td><td>R5(17)M1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td><td>R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td><td>R5(17)M3 35,3 36,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td></td></td>	R36(19)M3 R36(19)M3 77,4 0,0 70,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0 0,2 0,0	R36(19)M2 R34(19)M2 174,9 0,0 0,0 0,0 0,0 0,0 0,1,4 5,1 3,4 0,0 <td>R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 0.0 0.0 5.7 224,5 296,2 150,9 9.0 94,3 41,5 7,5 0.0 17.0 0.2 17.0 0.2</td><td>C15(18)02 0,7 0,0 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 1,4 1,4 339,4 3,3 6,4 90,2 21,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td><td>C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td><td>1 C15(18)04 1,5 1,5 0,0 0,5 1,5 2,0 25,0 16,0 3,0 5,5 0,0 0,0 4,5 1,5 0,0 0,0 4,5 1,0 0,0 2,0 0,0 1,5 0,0 1,5 0,0 1,5 1,0 0,0 1,5 0,0 1,5 1,7 8,6,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,6 1,7 8,6,5 1,5</td><td>R5(17)M1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td><td>R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td><td>R5(17)M3 35,3 36,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td></td>	R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 0.0 0.0 5.7 224,5 296,2 150,9 9.0 94,3 41,5 7,5 0.0 17.0 0.2 17.0 0.2</td> <td>C15(18)02 0,7 0,0 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 1,4 1,4 339,4 3,3 6,4 90,2 21,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td> <td>C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>1 C15(18)04 1,5 1,5 0,0 0,5 1,5 2,0 25,0 16,0 3,0 5,5 0,0 0,0 4,5 1,5 0,0 0,0 4,5 1,0 0,0 2,0 0,0 1,5 0,0 1,5 0,0 1,5 1,0 0,0 1,5 0,0 1,5 1,7 8,6,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,6 1,7 8,6,5 1,5</td> <td>R5(17)M1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>R5(17)M3 35,3 36,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	32 C15(18)01 0.0 0.0 0.0 0.0 0.0 5.7 224,5 296,2 150,9 9.0 94,3 41,5 7,5 0.0 17.0 0.2 17.0 0.2	C15(18)02 0,7 0,0 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 1,4 1,4 339,4 3,3 6,4 90,2 21,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0	1 C15(18)04 1,5 1,5 0,0 0,5 1,5 2,0 25,0 16,0 3,0 5,5 0,0 0,0 4,5 1,5 0,0 0,0 4,5 1,0 0,0 2,0 0,0 1,5 0,0 1,5 0,0 1,5 1,0 0,0 1,5 0,0 1,5 1,7 8,6,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,6 1,7 8,6,5 1,5	R5(17)M1 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R5(17)M3 35,3 36,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium poeyanum Elphidium discoidale Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Tochammina plystoma Miliammina fusca Quinqueloculina milletti Quinqueloculina milletti Quinqueloculina sen Trochammina sp9 Trochammina sp9 Abundancia total (ind/gr de sedimento) Aglutinados (%) Porcelanaceos (%) Hialino (%) Epifaunal (%) BF01 Riqueza de especies (S) Dominancia (D) Shannon (H)	PR19(04) 9R19(04) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 1,0 99,0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 <td>R36(19)M4 R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R36(19)M3 R36(19)M3 77,4 0,0 7,6 0,2 0,8 5,2 0,6 0,0 10,0,0 -49,0 11,0,0 -7,0,7 0,3</td> <td>R36(19)M2 R36(19)M2 174,9 0,0 0,0 0,0 0,1,4 5,1 3,4 0,0<td>R36(19)M1 R36(19)M1 66,5 0,3 1,0 0,0</td><td>C15(18)01 C15(18)01 0,0 0,0 0,0 57 224,5 296,2 150,9 0,0 94,3 41,5 79,2 150,9 0,0 94,3 41,5 79,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 996,2 6,3 2,1 91,7 3,8 94,0 17,0 0,2 2,0 2,2</td><td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 0,0 1,4 1,5,6 1,4 4,9 0,0 0,0 0,0 1,4 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td><td>C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td><td>C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 15,5 0,0 0,0 0,0 4,5 1,0 0,0 0,0 4,5 1,0 0,0 0,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5</td><td>RS(17)M1 3.0 0.0 1,1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</td><td>R5(17)M2 90,5 90,5 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td><td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td></td>	R36(19)M4 R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M3 R36(19)M3 77,4 0,0 7,6 0,2 0,8 5,2 0,6 0,0 10,0,0 -49,0 11,0,0 -7,0,7 0,3	R36(19)M2 R36(19)M2 174,9 0,0 0,0 0,0 0,1,4 5,1 3,4 0,0 <td>R36(19)M1 R36(19)M1 66,5 0,3 1,0 0,0</td> <td>C15(18)01 C15(18)01 0,0 0,0 0,0 57 224,5 296,2 150,9 0,0 94,3 41,5 79,2 150,9 0,0 94,3 41,5 79,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 996,2 6,3 2,1 91,7 3,8 94,0 17,0 0,2 2,0 2,2</td> <td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 0,0 1,4 1,5,6 1,4 4,9 0,0 0,0 0,0 1,4 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td> <td>C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 15,5 0,0 0,0 0,0 4,5 1,0 0,0 0,0 4,5 1,0 0,0 0,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5</td> <td>RS(17)M1 3.0 0.0 1,1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</td> <td>R5(17)M2 90,5 90,5 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	R36(19)M1 R36(19)M1 66,5 0,3 1,0 0,0	C15(18)01 C15(18)01 0,0 0,0 0,0 57 224,5 296,2 150,9 0,0 94,3 41,5 79,2 150,9 0,0 94,3 41,5 79,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 996,2 6,3 2,1 91,7 3,8 94,0 17,0 0,2 2,0 2,2	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 0,0 1,4 1,5,6 1,4 4,9 0,0 0,0 0,0 1,4 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 15,5 0,0 0,0 0,0 4,5 1,0 0,0 0,0 4,5 1,0 0,0 0,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	RS(17)M1 3.0 0.0 1,1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	R5(17)M2 90,5 90,5 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium poeyanum Elphidium sp4 Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Uadammina polystoma Miliamnina fusca Quinqueloculina antiletti Quinqueloculina seminulum Quinqueloculina sep Trochammina offata Trochammina sp9 Abundancia total (ind/gr de sedimento) Ağlutinados (%) Porcelanaceos (%) Hialina (%) Epifaunal (%) BF01 Riqueza de especies (\$) Dominancia (D) Shannon (H) Alpha de Fisher	PR19(04) 9R19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0.0 <td>R36(19)M4 R36(19)M4 0,9 0,9 0,0 104,4 98,9 1,1 0,0 5,0 0,5 1,0 1,1 89,7</td> <td>R36(19)M3 R36(19)M3 77,4 0,0 76,6 0,2 0,8 5,2 0,6 0,0 99,8 0,0 11,0 0,7 0,7 1,3 72.0</td> <td>R36(19)M2 R374,9 174,9 0,0</td> <td>R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.3 41.5 79.2 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <</td><td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 28,9 1,4 4,5 6 1,4 4,9 0,0 0,0 0,0 0,0 1,4 4,1 339,4 3,3 6,4 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,5 5,5</td><td>C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td><td>C15(18)04 C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 0,5 15,5 0,0 0,0 0,5 15,5 0,0 0,0 0,0 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 15,5 0,0 0,0 15,5 15,5 15,5 15,5 15,5 15,5 1,0 0,0 0,0 15,5 15,5 15,5 1,0 0,0 0,0 15,5 15,5 1,0 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 1,0 0,0 0,0 15,5 1,5 1,5 1,5 1,5 1,5 1,5 1,</td><td>RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td><td>R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td><td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td></td>	R36(19)M4 R36(19)M4 0,9 0,9 0,0 104,4 98,9 1,1 0,0 5,0 0,5 1,0 1,1 89,7	R36(19)M3 R36(19)M3 77,4 0,0 76,6 0,2 0,8 5,2 0,6 0,0 99,8 0,0 11,0 0,7 0,7 1,3 72.0	R36(19)M2 R374,9 174,9 0,0	R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.3 41.5 79.2 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <</td> <td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 28,9 1,4 4,5 6 1,4 4,9 0,0 0,0 0,0 0,0 1,4 4,1 339,4 3,3 6,4 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,5 5,5</td> <td>C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>C15(18)04 C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 0,5 15,5 0,0 0,0 0,5 15,5 0,0 0,0 0,0 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 15,5 0,0 0,0 15,5 15,5 15,5 15,5 15,5 15,5 1,0 0,0 0,0 15,5 15,5 15,5 1,0 0,0 0,0 15,5 15,5 1,0 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 1,0 0,0 0,0 15,5 1,5 1,5 1,5 1,5 1,5 1,5 1,</td> <td>RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	32 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.3 41.5 79.2 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 28,9 1,4 4,5 6 1,4 4,9 0,0 0,0 0,0 0,0 1,4 4,1 339,4 3,3 6,4 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,5 5,5	C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 0,5 15,5 0,0 0,0 0,5 15,5 0,0 0,0 0,0 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 15,5 0,0 0,0 15,5 15,5 15,5 15,5 15,5 15,5 1,0 0,0 0,0 15,5 15,5 15,5 1,0 0,0 0,0 15,5 15,5 1,0 0,0 0,0 15,5 15,5 0,0 0,0 15,5 15,5 1,0 0,0 0,0 15,5 1,5 1,5 1,5 1,5 1,5 1,5 1,	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium peruviana Cribroelphidium peoyanum Elphidium sp3 Elphidium sp3 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Adammina polystoma Miliammina fusca Quinqueloculina patagonica Quinqueloculina patagonica Quinqueloculina seminulum Quinqueloculina spp Trochammina inflata Trochammina polystoma Aglutinados (%) Porcelanaceos (%) Hialino (%) Epifaunal (%) Infaunal (%) BFOI Riqueza de especies (S) Dominancia (D) Shannon (H) Alpha de Fisher Grupo A (%)	PR19(04) PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 9R19(05) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M5 0.0	R36(19)M4 R36(19)M4 0,9 0,0 0,0 11,5 0,0 104,4 98,9 1,1 80,5 1,0 0,5 1,0 0,5 1,0 1,1 89,7 1,1 80,7 1,1 80,0	R36(19)M3 R36(19)M3 77,4 70,0 76 0,0 7,6 0,2 0,0 7,6 0,2 0,8 5,2 0,6 0,0	R36(19)M2 R34(19)M2 174,9 0,0 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0 100,0 -49,0 -7,0 0,6 1,4 7,1 16,7	R36(19)M1 66,5 0,3 1,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 224,5 296,2 15,7 224,5 296,2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17,0 0.2 2.0 2.0 2.9 86,3 0.0</td> <td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 4,9 0,0 0,0 1,4 1,4 4,9 0,0 0,0 1,2 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4</td> <td>C15(18)03 C15(18)03 0,0 0,0 0,9 0,0 0,0 0,0 0,0 0,0</td> <td>1 C15(18)04 1,5 1,5 0,0 0,5 1,5 2,0 25,0 16,0 0,0 3,0 3,0 0,5 0,5 0,5 0,6 15,5 0,0 0,0 4,0 0,0 1,5 1,0 0,0 1,0 0,0 1,5 1,6 1,7 8,6,5 4,9,6 4,9,0 2,2 9,9 8,0,0</td> <td>R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	32 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 224,5 296,2 15,7 224,5 296,2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17,0 0.2 2.0 2.0 2.9 86,3 0.0	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 128,2 95,8 27,5 0,0 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 4,9 0,0 0,0 0,0 1,4 1,4 4,9 0,0 0,0 1,4 1,4 4,9 0,0 0,0 1,2 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	C15(18)03 C15(18)03 0,0 0,0 0,9 0,0 0,0 0,0 0,0 0,0	1 C15(18)04 1,5 1,5 0,0 0,5 1,5 2,0 25,0 16,0 0,0 3,0 3,0 0,5 0,5 0,5 0,6 15,5 0,0 0,0 4,0 0,0 1,5 1,0 0,0 1,0 0,0 1,5 1,6 1,7 8,6,5 4,9,6 4,9,0 2,2 9,9 8,0,0	R5(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium poeyanum Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp0 Tochammina plystoma Miliammina fusca Quinqueloculina patagonica Quinqueloculina milletti Quinqueloculina milletti Quinqueloculina sp0 Trochammina ochracea Trochammina sp0 Abundancia total (ind/gr de sedimento) Aglutinados (%) Porcelanaceos (%) Hialino (%) Epifaunal (%) BF01 Riqueza de especies (S) Dominancia (D) Shannon (H) Alpha de Fisher Grupo A (%) Grupo B (%)	PR19(04) PR19(04) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0,0 1,0 99,0 1,0 99,0 1,0 99,0 1,0	R36(19)M4 R36(19)M4 0,9 0,0 0,0 11,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R36(19)M3 R36(19)M3 77,4 0,0 7,6 0,2 0,8 5,2 0,6 0,0	R36(19)M2 R36(19)M2 174,9 0,0 0,0 0,0 1,3,4 0,0 1,7 3,4 0,0 1,7 0,0 <td>R36(19)M1 R36(19)M1 66,5 0,3 1,0 0,0</td> <td>C15(18)01 0.0 0.0 0.0 0.0 54,7 0.0 57 224,5 296,2 150,9 0.0 94,3 41,5 79,2 77,5 0.0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 996,2 6,3 17,0 1,7 3,8 9,2 -49,0 17,7 3,6 2,9 86,3 0,0 3,5 5</td> <td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>C15(18)03 0,0 0,0 0,9 0,0 0,0 0,0 0,0 0,0</td> <td>C15(18)04 C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 15,5 0,0 0,0 0,0 4,5 1,5 1,0 0,0 0,0 0,0 4,5 1,0 0,0 0,0 0,0 15,5 0,0 0,0 0,0 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5</td> <td>R5(17)M1 3.0 0.0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,</td> <td>R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,5 0,0 0,5 0,0 0,1 0,0 0,0 0,1 0,0 0,6 0,9 1,0 0,6 0,9 1,0,0 0,0 0,0</td> <td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	R36(19)M1 R36(19)M1 66,5 0,3 1,0 0,0	C15(18)01 0.0 0.0 0.0 0.0 54,7 0.0 57 224,5 296,2 150,9 0.0 94,3 41,5 79,2 77,5 0.0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 996,2 6,3 17,0 1,7 3,8 9,2 -49,0 17,7 3,6 2,9 86,3 0,0 3,5 5	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	C15(18)03 0,0 0,0 0,9 0,0 0,0 0,0 0,0 0,0	C15(18)04 C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 3,0 0,5 15,5 0,0 0,0 0,0 4,5 1,5 1,0 0,0 0,0 0,0 4,5 1,0 0,0 0,0 0,0 15,5 0,0 0,0 0,0 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 0,0 15,5 15,5 0,0 0,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	R5(17)M1 3.0 0.0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,5 0,0 0,5 0,0 0,1 0,0 0,0 0,1 0,0 0,6 0,9 1,0 0,6 0,9 1,0,0 0,0 0,0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium poeyanum Elphidium sp4 Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Uadammina polystoma Miliammina fusca Quinqueloculina milletti Quinqueloculina patogonica Quinqueloculina seminulum Quinqueloculina seminum Quinqueloculina seminum	PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0.0	R36(19)M4 R36(19)M4 0,9 0,0 104,4 98,9 1,1 1,0 1,0 1,0 1,1 88,7 0,0 0,0 0,0	R36(19)M3 R36(19)M3 77,4 0,0 76,6 0,2 0,8 5,2 0,6 0,0 10,0 11,0 0,7 3,3 118,9	R36(19)M2 R36(19)M2 174,9 0,0 0,0 0,0 0,0 1,4 5,1 3,4 0,0 1,4 5,1 0,0	R36(19)M1 66,5 0,3 1,0 0,0 <td>0.2 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.3 41.5 79.2 150.9 0.0 94.3 41.5 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 996,2 6.3 2.1 9.7 3.8 96,2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0<td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 14,1 339,4 3,3 6,4 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,3</td><td>C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td><td>C15(18)04 C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0</td><td>RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td><td>R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td><td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td></td>	0.2 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.3 41.5 79.2 150.9 0.0 94.3 41.5 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 996,2 6.3 2.1 9.7 3.8 96,2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <td>C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 14,1 339,4 3,3 6,4 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,3</td> <td>C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>C15(18)04 C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0</td> <td>RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	C15(18)02 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 0,0 28,9 1,4 4,9 0,0 0,0 0,0 0,0 1,4 1,4 14,1 339,4 3,3 6,4 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,3 9,3	C15(18)03 C15(18)03 0,0 0,9 0,0 0,0 0,0 0,0 0,0 0,0	C15(18)04 C15(18)04 1,5 0,0 0,5 1,5 1,5 2,0 25,0 16,0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(7)M2 R5(7)M2 90,5 3,7 13,2 0,5 0,0 0,0 0,5 5,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium gunteri Cribroelphidium gunteri Cribroelphidium gunteri Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Jadammina polystoma Miliammina fusca Quinqueloculina patagonica Quinqueloculina patagonica Quinqueloculina patagonica Quinqueloculina patagonica Quinqueloculina patagonica Quinqueloculina patagonica Quinqueloculina patagonica Quinqueloculina seminulum Quinqueloculina patagonica Quinqueloculina sepp Trochammina othracea Trochammina othracea Trochammina (%) Hialino (%) Epifaunal (%) Infaunal (%) BFOI Riqueza de especies (S) Dominancia (D) Shannon (H) Alpha de Fisher Grupo A (%) Grupo C (%) Grupo D (%) Amorfos (%)	PR19(04) PR19(04) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	PR19(05) 0,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td>R36(19)M4 R36(19)M4 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 104,4 98,9 1,1 0,0 0,0 0,0 0,0 0,0 0,0 1,1 89,7 1,1 89,7 1,0 0,0 0,0<td>R36(19)M3 R36(19)M3 77,4 70,0 76 0,0 7,6 0,2 0,8 5,2 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 11,0 0,7 3,3 12,9 0,5</td><td>R36(19)M2 R36(19)M2 174,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td><td>R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 224,5 296,2 15,7 7.5 0.0 94,3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.0 0.2 2.0 2.9 86,3 0.0 3.5 10.2 0.4</td><td>C15(18)02 0,7 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,4 4,9 339,4 3,3,3 6,4 90,7 -49,0 21,0 0,2 1,3 0,2 0,0</td><td>C15[18]03 C15[18]03 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,8 0,0 40,0 60,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0</td><td>11 C15(18)04 1,5 1,5 0,0 0,5 0,5 0,5 0,5 1,5 1,5 1,0 0,0 0,0 1,5 0,0 0,5 0,0 0,0 0,0 0,0 0,0 1,5 0,0 0,0 1,5 0,0 0,0 1,5 1,7 8,5 1,8 11,7 8,6 -49,0 2,2 9,9 8,0 0,0 10,0 0,0 10,0 0,0 0,0 10,0 0,0 10,0 0,0</td><td>RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,5 93,9 0,6 1,5 93,0 0,0 0,6 1,2 0,6</td><td>RS(7)/M2 RS(7)/M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td><td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td></td></td>	R36(19)M4 R36(19)M4 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 104,4 98,9 1,1 0,0 0,0 0,0 0,0 0,0 0,0 1,1 89,7 1,1 89,7 1,0 0,0 0,0 <td>R36(19)M3 R36(19)M3 77,4 70,0 76 0,0 7,6 0,2 0,8 5,2 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 11,0 0,7 3,3 12,9 0,5</td> <td>R36(19)M2 R36(19)M2 174,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 224,5 296,2 15,7 7.5 0.0 94,3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.0 0.2 2.0 2.9 86,3 0.0 3.5 10.2 0.4</td><td>C15(18)02 0,7 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,4 4,9 339,4 3,3,3 6,4 90,7 -49,0 21,0 0,2 1,3 0,2 0,0</td><td>C15[18]03 C15[18]03 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,8 0,0 40,0 60,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0</td><td>11 C15(18)04 1,5 1,5 0,0 0,5 0,5 0,5 0,5 1,5 1,5 1,0 0,0 0,0 1,5 0,0 0,5 0,0 0,0 0,0 0,0 0,0 1,5 0,0 0,0 1,5 0,0 0,0 1,5 1,7 8,5 1,8 11,7 8,6 -49,0 2,2 9,9 8,0 0,0 10,0 0,0 10,0 0,0 0,0 10,0 0,0 10,0 0,0</td><td>RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,5 93,9 0,6 1,5 93,0 0,0 0,6 1,2 0,6</td><td>RS(7)/M2 RS(7)/M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td><td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td></td>	R36(19)M3 R36(19)M3 77,4 70,0 76 0,0 7,6 0,2 0,8 5,2 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 11,0 0,7 3,3 12,9 0,5	R36(19)M2 R36(19)M2 174,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R36(19)M1 66,5 0,3 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 <td>32 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 224,5 296,2 15,7 7.5 0.0 94,3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.0 0.2 2.0 2.9 86,3 0.0 3.5 10.2 0.4</td> <td>C15(18)02 0,7 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,4 4,9 339,4 3,3,3 6,4 90,7 -49,0 21,0 0,2 1,3 0,2 0,0</td> <td>C15[18]03 C15[18]03 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,8 0,0 40,0 60,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0</td> <td>11 C15(18)04 1,5 1,5 0,0 0,5 0,5 0,5 0,5 1,5 1,5 1,0 0,0 0,0 1,5 0,0 0,5 0,0 0,0 0,0 0,0 0,0 1,5 0,0 0,0 1,5 0,0 0,0 1,5 1,7 8,5 1,8 11,7 8,6 -49,0 2,2 9,9 8,0 0,0 10,0 0,0 10,0 0,0 0,0 10,0 0,0 10,0 0,0</td> <td>RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,5 93,9 0,6 1,5 93,0 0,0 0,6 1,2 0,6</td> <td>RS(7)/M2 RS(7)/M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td> <td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	32 C15(18)01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 224,5 296,2 15,7 7.5 0.0 94,3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.0 0.2 2.0 2.9 86,3 0.0 3.5 10.2 0.4	C15(18)02 0,7 0,7 0,0 0,7 0,0 128,2 95,8 27,5 0,0 28,9 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,4 4,9 339,4 3,3,3 6,4 90,7 -49,0 21,0 0,2 1,3 0,2 0,0	C15[18]03 C15[18]03 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,8 0,0 40,0 60,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0	11 C15(18)04 1,5 1,5 0,0 0,5 0,5 0,5 0,5 1,5 1,5 1,0 0,0 0,0 1,5 0,0 0,5 0,0 0,0 0,0 0,0 0,0 1,5 0,0 0,0 1,5 0,0 0,0 1,5 1,7 8,5 1,8 11,7 8,6 -49,0 2,2 9,9 8,0 0,0 10,0 0,0 10,0 0,0 0,0 10,0 0,0 10,0 0,0	RS(17)M1 3,0 0,0 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1,5 93,9 0,6 1,5 93,0 0,0 0,6 1,2 0,6	RS(7)/M2 RS(7)/M2 90,5 3,7 13,2 0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Ammonia parkinsoniana Ammonia spp Ammonia tepida Arenoparrella mexicana Astrononion sp1 Buccella peruviana Cribroelphidium excavatum Cribroelphidium poeyanum Elphidium sp4 Elphidium sp9 Elphidium sp9 Elphidium sp9 Elphidium sp9 Muliammina fusca Quinqueloculina milletti Quinqueloculina milletti Quinqueloculina milletti Quinqueloculina milletti Quinqueloculina sp1 Trochammina ochracea Trochammina sp2 Abundancia total (ind/gr de sedimento) Aglutinados (%) Porcelanaceos (%) Hialino (%) Epifaunal (%) BF01 Riqueza de especies (S) Dominancia (D) Shannon (H) Alpha de Fisher Grupo B (%) Grupo B (%) Grupo B (%) Grupo B (%) Grupo D (%) Grupo D (%) Grupo D (%)	PR19(04) PR19(04) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	PR19(05) PR19(05) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	R36(19)M5 0,0 4,3 7,2 1,0 99,0 1,0 0,0 0,0 0,0 1,0 0,0 1,0 0,0 3,3 4,8	R36(19)M4 R36(19)M4 0.9 0.0 0.11,5 0.0 104,4 94,9 95,9 1,1 89,7 0.0 10,3 4,9 8,2	R36(19)M3 R36(19)M3 77,4 0,0 7,6 0,2 0,8 5,2 0,6 0,0 1,0,0	R36(19)M2 R36(19)M2 174,9 0,0 0,0 0,0 1,3,4 0,0 1,7 3,4 0,0 1,7 0,0 <td>R36(19)M1 R36(19)M1 66,5 0,3 1,0 0,0</td> <td> C15(18)01 0.0 0.0 0.0 0.0 54,7 0.0 57 224,5 296,2 150,9 0.0 94,3 41,5 79,2 7,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 17,0 191,7 3,8 96,2 -49,0 17,7 3,8 9,2 -49,0 17,7 3,5 10,2 2,0 3,5 10,2 0,4 1,4</td> <td>C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0 27,5 0,0 27,5 0,0 27,5 0,0 28,9 1,4 5,6 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 1,4 339,4 3,3 6,4 90,2 9,3 90,7 -49,0 21,0 98,5 0,0 1,3 0,2 1,3 0,0</td> <td>C15(18)03 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0</td> <td>C15(18)04 1,5 0,0 0,5 1,5 0,0 2,0 25,0 1,5 0,0 0,0 1,5 0,0 0,0 0,5 15,5 0,0 0,0 0,0 0,0 1,0 0,0 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 2,2 9,9 85,0 0,0 0,0 10,0 5,0 0,0 10,0 5,0 0,0 0,0</td> <td>R5(17)M1 3.0 3.0 0.0 1,1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</td> <td>R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,0 0,1 0,0</td> <td>R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</td>	R36(19)M1 R36(19)M1 66,5 0,3 1,0 0,0	C15(18)01 0.0 0.0 0.0 0.0 54,7 0.0 57 224,5 296,2 150,9 0.0 94,3 41,5 79,2 7,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 17,0 191,7 3,8 96,2 -49,0 17,7 3,8 9,2 -49,0 17,7 3,5 10,2 2,0 3,5 10,2 0,4 1,4	C15(18)02 0,7 0,0 0,7 0,0 12,7 0,0 27,5 0,0 27,5 0,0 27,5 0,0 28,9 1,4 5,6 1,4 5,6 1,4 4,9 0,0 0,0 0,0 0,0 0,0 0,0 1,4 339,4 3,3 6,4 90,2 9,3 90,7 -49,0 21,0 98,5 0,0 1,3 0,2 1,3 0,0	C15(18)03 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	C15(18)04 1,5 0,0 0,5 1,5 0,0 2,0 25,0 1,5 0,0 0,0 1,5 0,0 0,0 0,5 15,5 0,0 0,0 0,0 0,0 1,0 0,0 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 1,5 0,0 2,2 9,9 85,0 0,0 0,0 10,0 5,0 0,0 10,0 5,0 0,0 0,0	R5(17)M1 3.0 3.0 0.0 1,1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	R5(17)M2 90,5 3,7 13,2 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,0 0,1 0,0	R5(17)M3 35,3 0,6 10,4 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Tabla 4.4. Abundancia de foraminíferos más representados (abundancia ind/g > 2 % de la asociación total en más de dos muestras), las especies más abundantes están subrayadas en gris. Tipo de conchillas (aglutinado, porcelanáceos, Hialinos), microhábitat (infaunal, epifaunal), diversidad (Riqueza de especies, Índice de Shannon, Alfa de Fisher), tafonomía: (Grupo A) bien preservados, Grupo B) con coloración negra o marrón, Grupo C) fragmentados, Grupo D) retrabajados.) foraminíferos vivos, foraminíferos amorfos, BFOI: Índice de Kaiho, IAE: índice *Ammonia / Elphidum*.

Figura 4.6. 1 Grupo tafonómico A: conchillas bien preservadas, o como máximo a las que les falta la última cámara; 2 y 3 Grupo tafonómico B: conchillas "negras" con relleno de pirita framboidal; 4 y 5 Grupo tafonómico C: conchillas rotas o fragmentadas; 6 Grupo tafonómico D: conchillas pulidas o con signos de abrasión o retrabajo; 7,8 u 9 Conchilla amorfas.

4.2.2.2 Distribución de foraminíferos

Para el análisis de la microfauna, se pudieron analizar un total de 28 muestras superficiales (Tabla 4.4 Y Fig.4.7) de las cuales se extrajeron un total 8736 foraminíferos. De las muestras analizadas, solo en 9 de ellas se encontraron foraminíferos teñidos con rosa de Bengala los cuales se asumen que estaban vivos al momento de la colecta, estas muestras corresponden a **C15** (C15(18)01), **R36** (R36(19)M1, R36(19)M3, R36(19)M5, R36(19)M4, RS, RS(17)M3, RS(17)M1) y **PR**: (PR19(01), PR19(02)), (Fig. 4.7). Estos foraminíferos estuvieron representados fundamentalmente

por individuos de los géneros *Ammonia*, *Jadammina*, *Milliaminella* y*Trochammina*, alcanzando entre el 0,5 y el 8,2 %, en las muestras analizadas. El porcentaje de organismos vivos alcanzó los valores más altos en R36, entre el 3,7 y el 8,2 %. Teniendo en cuenta el bajo porcentaje de organismos vivos, los análisis faunísticos y estadísticos se realizaron sobre la tanatocenosis total, considerando conjuntamente los individuos vivos y los muertos (fauna total) y descartando los que presentaban indicios de retrabajo.

Figura 4.7 Distancia a la costa (km), elevación (m), abundancia (ind/g), foraminíferos vivos (%), foraminíferos amorfos (%), tipo de conchilla (aglutinado: gris, porcelanáceos: azul, hialino: amarillo), hábitat (epifaunal: gris, infaunal; azul). Grupos tafonómicos: Gris, (A) Bien preservados. Azul, (B) retrabajados. (C) Fragmentado. (D) Color oscuro o con signos de piritización.

La abundancia relativa varió entre 7,1 ind/g y 2 585,7 ind/g, en la figura 4.7 se muestra que los valores más altos se encontraron en **C15** (MS1(15), MS5(15), C15(18)01) y los más bajos en **PR** (PR (19)02, PR (19)03, PR(19)04,PR(19)05) y **RS** (RS(17)01).

El porcentaje de organismos amorfos varió entre 4,9 % y el 0,2 %. Los valores más altos se localizan en **PR** (PR19(04), PR19(05)) y **R36** (R36(19)M5, R36(19)M4) (Fig. 4.7). El análisis de correlación de Spearman indica que el porcentaje de organismos amorfos presentan una correlación positiva con el NT (rho = 0,85) y una correlación negativa con la distancia a la costa (rho = -0,47).

Figura 4.8. Distancia a la costa (km), elevación (m), riqueza de especies (S), dominancia de Simpson, índices de Shannon-Wiener (H) y alfa de Fisher (α), BFOI (índice óxico de foraminíferos bentónicos) y IAE (índice de *Ammonia-Elphidium*).

Los foraminíferos analizados se agruparon en 37 géneros pertenecientes a los órdenes Rotaliida y Lituolida y en menor proporción al orden Miliolida. Los géneros más representados fueron *Cribroelphidium*, *Ammonia*, *Buccella*, *Elphidium*, *Bolivina*, *Quinqueloculina*, *Astrononion*, *Miliammina*, *Jadammina*, *Trochammina* y *Arenoparella*.

Las muestras localizadas en **R36** se dividen en dos zonas, la primera agrupa las muestras R36(17)M5 y R36(17)M4 caracterizadas por organismos de conchilla aglutinada correspondientes principalmente al género *Jadammina* y en menor proporción a los géneros *Miliammina*, *Trochammina* y *Arenoparella*. La segunda zona agrupa las muestras R36(17)M1, R36(17)M2 y R36(17)M3 y se caracteriza por la presencia principalmente de microorganismos hialinos del género *Ammonia* y *Cribroelphidium* en menor proporción.

Las muestras localizadas en la zona central de Bahía Samborombón, específicamente en **C15** se caracterizan por tener mayor diversidad en el tipo de conchillas. Aunque predominan las conchillas hialinas, se puede observar un alto porcentaje de conchillas aglutinadas y porcelanaceas en algunas muestras. Los géneros *Cribroelphidium* y *Elphidum* son los más abundantes, excepto en las muestras MS6(15) y MS3(15) en las cuales predominan individuos del género *Astrononion* y en menor proporción se encuentran especies aglutinadas de los géneros *Jadammina*, *Trochammina*, *Arenoparella* y *Cribroelphidium*. A su vez, las muestras MS4(15), MS2(14) y C15(18)03 presentan una P á g i n a 61 | 194 gran diversidad de géneros como Cribroelphidium, Ammonia, Elphidium, Quinqueloculina, Jadammina, Trochammina y Arenoparella.

Las muestras localizadas al sur de la bahía en **PR** están compuestas principalmente por conchillas hialinas y porcelanaceas de los géneros *Quinqueloculina*, *Buccella*, *Cribroelphidium* y *Elphidium*.

Se identificaron 59 especies de las cuales *Cribroelphidium gunteri, Cribroelphidium excavatum, Astrononions p.*1, *Ammonia parkinsoniana, Jadammina polystoma, Arenoparrella mexicana* y *Cribroelphidium poeyanum* fueron las más representadas (Tabla 4.4). Las zonas de muestreo presentan diferencias en la distribución de las especies (Fig. 4.9, Anexoll) y los índices de diversidad (Fig. 4.8, Anexoll).

Figura 4.9. Distancia a la costa (km), elevación (m), abundancia de foraminíferos bentónicos con abundancia mayor al 2 por ciento en más de dos muestras en muestras superficiales Troc oc: *Trochammina ochracea*, Troc inf: *Trochammina inflata*, Quin sem: *Quinqueloculina seminulum*, Quin pat: *Quinqueloculina patagónica*, Quin mil: *Quinqueloculina milletti*, Mil fus: *Miliammina fusca*, jad pol: Jadammina polystoma, Elp dis: *Elphidium discoidale*, Crib poe: *Cribroelphidium poeyanum*, Crb gun: *Cribroelphidium gunteri*, Crib ex: *Cribroelphidium excavatum*, Buc per: *Buccella peruviana* Astr: *Astrononion* sp., Are Mex: *Arenoparrella mexicana*, Am Te: *Ammonia tepida* Am par: *Ammonia parkinsoniana*.

Las muestras localizadas en **RS** están compuestas principalmente por foraminíferos de conchilla hialina de los géneros *Ammonia, Cribroelphidium* y *Elphidum* (Fig. 4.9, Tabla 4.4).

En **R36**, en las muestras R36(17)M5 y R36(17)M4, se reconocieron dos asociaciones; la primera constituida principalmente por *Jadammina polystoma*, *Miliammina fusca* y en menor proporción *Trochammina inflata*. Particularmente, R36(17)M4 presenta un alto porcentaje de

Arenoparrella mexicana. La segunda asociación, presente en las muestras R36(17)M1, R36(17)M2 y R36(17)M3, estuvo caracterizada por Ammonia parkinsoniana, Ammonia tepida y en menor proporción Cribroelphidium excavatum, Cribroelphidium gunteri y Cribroelphidium poeyanum (Fig. 4.9, Tabla 4.4). Por otro lado, el índice de Fisher (1,1 - 1,6) y de Shannon-Wiener (0,4 - 1) indicaron valores bajos de diversidad (Fig. 4.8, Tabla 4.4).

En **RS** se determinó una asociación compuesta por *Ammonia parkinsoniana* y *Ammonia tepida* y en menor proporción *Cribroelphidium excavatum* y *Cribroelphidium gunteri*, respectivamente (Fig. 4.9, Tabla 4.4). Además, los índices de diversidad de Fisher (3) y de Shannon-Wiener (0,6 – 1,3) presentaron valores bajos (Fig. 4.8, Tabla 4.4).

En **C15** la composición de especies no fue uniforme (Fig 4.9), sino que se pudieron determinar 5 asociaciones: la primera reúne principalmente por *Cribroelphidium excavatum*, *Cribroelphidium gunteri* y *Cribroelphidium poeyanum*, presentes en las muestras MS01(14), MS03(14), MS04(14), MS05(14), MS1(15), MS2(15), MS6(15), C15(18)01, C15(18)02 y C15(18)03. La segunda asociación se caracteriza por la dominancia de *Astrononion* sp.1 y la presencia en menor proporción de especies aglutinadas como *Arenoparrella mexicana* y *Jadammina polystoma* en las muestras MS3(15) y MS5(15). La tercera constituye especies diversas donde ninguna de ellas es dominante; agrupa las muestras MS4(15) y MS2(14) y contiene fundamentalmente foraminíferos aglutinados como *Jadammina polystoma*, *Trochammina inflata*, *Arenoparrella mexicana* y *Trochammina ochracea* y en C15(18)03 se encontró mayor cantidad de foraminíferos porcelanaceos como *Quinqueloculina milletti* y algunos aglutinados como *Trochammina inflata* y *Trochammina ochracea*. Los índices alfa de Fisher (1,4 - 6) y de Shannon-Wiener (0,8 - 2,4) sugieren valores más altos de diversidad respecto a las muestras de RS y R36 (Fig. 4.8, Tabla 4.4).

En **PR** la asociación se caracterizó por un alto porcentaje de *Buccella peruviana* una menor proporción de *Cribroelphidium poeyanum* y por la presencia además de especies del género Quinqueloculina. Por su parte, los índices de Shannon-Wiener (1,7 - 2,1) y alfa de Fisher (8,2) indicaron mayor diversidad en relación a las muestras de R36, RS y a algunas de C15 (Fig. 4.8, Tabla 4.4).

Desde el punto de vista ecológico, el porcentaje de foraminíferos infaunales varió entre el 1 y el 100 %. Las muestras con menor porcentaje de infaunales (1 - 1,1 %) se ubicaron en R36 y comprendieron las muestras R36(17)M5 y R36(17)M4. Los mayores porcentajes de individuos

infaunales (80 - 100 %) se encontraron en R36 (R36(17)M1, R36(17)M2 y R36(17)M3; RS) y C15 (MS01(14), MS03(14), MS04(14), MS05(14), MS1(15), MS2(15), MS6(15), C15(18)01, C15(18)02 y C15(18)04) (Fig. 4.7). Los organismos epifaunales e infaunales presentaron una correlación positiva (rho = 0,60) y negativa (rho = -0.60) con la conductividad, respectivamente.

Con relación al valor del índice de Kaiho (BFOI) para todas las muestras fue de -49 y presentó correlación positiva con el MO (0,85) y con la elevación (0,41). El índice *Ammonia/Elphidium* (IAE) presentó valores entre 0 y 100. Los valores más altos se observaron en RS y R36 y los valores más bajos en C15 y PR. Este índice prentó una correlación negativa con la distancia a la costa (-0.54) (Fig. 4.7).

4.2.2.3 Análisis Multivariado foraminíferos

A partir del análisis de escalamiento multidimensional no paramétrico (nMDS) se obtuvieron valores de Stress: 0,14 y de ajuste de regresión no paramétrica de 0,98 indicando que la representación de los datos es satisfactoria. En la representación gráfica podemos observar 4 grupos (Fig. 4.10).

El Grupo 1 (**E1**), incluyó las muestras R36M5 y R36M4, y las especies más relacionadas fueron *Trochammina* spp., *Miliammina fusca* y *Jadammina polystoma*.

El Grupo 2 (**E2**), compuesto por muestras de **RS** (RSM1, RSM2, RSM3) y R36 (R36M1, R36M2, R36M3) y representado fundamentalmente por las especies *Ammonia tepida y Ammonia parkinsoniana*.

El Grupo 3 (E3), compuesta por muestras pertenecientes a **PR** (PR(19)03, PR(19)02, PR(19)04) y se asoció con especies como *Quinqueloculina patagonica*, *Quinqueloculina seminulum*, *Quinqueloculina* spp. y *Elphidium discoidale*.

EL grupo 4 **(E4)**, se halla en la zona centro del diagrama agrupando muestras de **C15** y **PR**, y se caracterizó por *Elphidium* spp, *Criboelphidium poeyanum* y *Trochammina ochracea*. Además, se pudieron observar 2 subgrupos, uno el Grupo 4a **(E4a)** constituido por MS2(15), MS3(15), MS4(15) y MS5(15) asociado a *Arenoparrella mexicana* y *Trochammina inflata* y otro, el Grupo 4b **(E4b)** que incluyó las muestras MS05(14), C15(18)04, MS01(14), MS02 (14), MS6(15), MS04(14), C15(18)02, PR(19)01 y PR(19)05 relacionado a *Buccella peruviana* y *Quinqueloculina milletti*.

Figura 4.10. Diagrama bidimensional obtenido a partir del análisis nMDS, donde se observa la distribución de las especies (A) y los sitios (B). Los círculos hacen referencia a los grupos determinados.

Teniendo en cuenta lo planteado por Bértola (1994), Luengo (2019) y las observaciones realizadas en campo, se clasificaron las muestras según su localización de la siguiente manera:

Ambiente	Sub ambiente	Sigla	Muestras
Supramareal	Marisma Media	MM	MS03R(14) MS04(14) MS05(14) MS1(15) MS2(15) MS3(15) MS4(15) MS5(15) MS6(15)
	Marisma alta con influencia de aguadulce.	MAF	MS05(14)
	Marisma Baja	MB	MS01(14) MS02(14) RSM1 RSM2 RSM3
	Canal de desagüe	CA	C15(18)01 C15(18)02 C15(18)03 C15(18)04 R36M3
Intermareal	Planicies Mareales	IN	R36M2 R36M1
Supramareal	Pradera / Marisma alta	PR	R36M5 R36M4
Playa	Playa arenosa	PL	PR (19)01
	Depositos mareales	DP	PR(19)02 PR(19)03 PR(19)04
Canal de marea	Canal de marea	CD	PR (19)05

Con el objetivo de evaluar si se podía caracterizar la distribucion de las especies según los subambientes, se utilizó un gráfico de polígonos para agrupar la variable de estudio (abundancia de las especies) con la afinidad a la variable categorica sub ambientes El NMDS muestra una separación entre los sitios según el tipo de sub ambiente característico, principalmente, los de playa y pradera. Por otro lado, se agurpan los sub ambientes de marisma baja e intermareal. No resulto clara la separación de los grupos conformados por las muestras provenientes de canal 15 (Fig. 4.11).

Figura 4.11. Diagrama bidimensional obtenido a partir del análisis nMDS. Se muestran los sitios agrupados por sub ambientes propuestos: PL: playa CD: canal de marea, MA: marisma alta, MM: marisma media, MB: marisma baja, IN: intermareal, CA: canal y PR: pradera.

4.2.2.4 Análisis de correspondencia canonica

El análisis de correspondencia canónica (ACC) representado en la figura 4.12, indico que el 88% de la varianza esta explicada por las variables ambientales analizada. Los ejes 1 y 2 explican el 41% y el 38% total de la varianza respectivamente (Anexo IV). Basados en el índice de correlación se interpreta el primer eje como una relación con la distancia a la costa (- 0,80) y el segundo eje como una relación con la conductividad (- 0,83) y la temperatura (-0,91). Se observa una distribución de las especies y las áreas en diferentes cuadrantes del gráfico bidimensional. Las especies *Trochammina ochracea, Miliammina fusca, Jadammina polystoma, Cribroelphidium gunteri, Cribroelphidium excavatum* y *Astrononion* sp. se relacionan con la distancia a la costa y están asociadas a muestras de C15. Las especies *Quinqueloculina seminulum, Quinqueloculina patagónica, Elphidium discoidale, Buccella peruviana* se relaciona con la conductividad y la temperatura y están

Página 67 | 194

asociada a sitios en PR. A su vez, la abundancia de las especies como Ammonia tepida y Ammonia parkinsoniana se asocian con sitios en RS y R36 y no se relaciona con ninguna de las variables analizadas.

Figura 4.12. Diagrama obtenido a partir del Análisis de Correspondencia Canónica (ACC). Se grafican las especies, sitios de muestreo y variables ambientales en Bahía Samborombón.

4.3 Discusión

4.3.1 Descripción de los sub-ambientes en Bahía Samborombón

La zona continental y litoral de la Bahía Samborombón es un ambiente heterogéneo, donde diferentes factores interactúan y modifican de una u otra forma el paisaje afectando la distribución de las especies de foraminíferos bentónicos que allí habitan.

Los resultados obtenidos evidencian diferencias entre la zona sur (PR) y la zona centro-Norte (R36, RS, C15) respecto a sus valores de conductividad y tamaño de grano.

La primera zona determinada e integrada por el grupo Z1 del análisis de componentes principales (Fig.4.4), se localiza al sur de la bahía y corresponde a las muestras tomadas en PR. Estas muestras se caracterizan por un alto porcentaje de arenas, bajo porcentaje de lodos y altos valores de conductividad. El alto porcentaje de arena se debe al traslado de partículas de este tamaño por deriva litoral desde el sur y su posterior depositación en Punta Rasa por pérdida de la capacidad de transporte (Bértola, 1994). Por otro lado, Punta Rasa se comporta como un ambiente mixto, donde coexisten depósitos mareales (al Oeste) y de playa arenosa (al Este) (Bértola y Morosi, 1997; Schinack, 2010), es por ello que las muestras localizadas al Oeste (PR(19)02 y PR(19)04) presentan un contenido más alto de lodo, los cuales son transportados en suspensión por la descarga del Río de la Plata, muy cerca a la costa, bordeando la bahía hasta Punta Rasa (Bértola, 1994). En cuanto a la conductividad, PR posee los valores más altos de todas las zonas estudiadas, lo cual obedece a una mayor influencia de aguas marinas sobre esta área.

La segunda zona integrada por los grupos Z2 y Z3 (Fig.4.4) corresponde a las muestras ubicadas en el centro y Norte de la bahía (C15, RS y R36). El análisis granulométrico muestra heterogeneidad en el tamaño de grano desde la zona Norte (R36) hasta la zona centro (C15), predominando la fracción lodo. Este patrón es característico de los canales de marea, ambientes intermareales o planicies de marea y ambientes supra-mareales o marismas (Bértola y Morosi, 1997; Bértola et al., 1998). Su distribución esta relacionada a diversos factores, principalmente, al aporte de sedimento fino proveniente del norte del Río de la Plata y pequeños ríos y canales de inundación de la cuenca del Salado (Bértola y Morosi, 1997; Bértola et al., 1998;). La acumulación de sedimento fino se debe en parte a la baja pendiente de la zona, la baja energía en el sistema y la vegetación de P á g i n a 69 | 194 la zona de marisma que funciona como trampa de sedimentos (Schinack, 2010). El alto porcentaje de arenas presentes en las muestras R36M3, C15(18)14, C15(18)12 y MS04(14) podrían deberse a procesos erosivos generados por el agua o el viento sobre los canales y las barrancas. En cuanto a los valores de conductividad en la zona central de la bahía se pueden clasificar en bajos (R36 y C15) y medios-altos (RS) en relación a todas las muestras. La baja conductividad de estas zonas se relaciona con la descarga de agua del Río de la Plata, y pequeños ríos y canales de inundación de la cuenca del Salado. Los valores medios de conductividad en RS tendrían que ver relacionar con la intrusión de agua salina dado al bajo caudal del río Salado. Por otro lado, el Canal 15 ha sufrido modificaciones que le perminten no solo transportar agua del río Salado en período de grandes precipitaciones, sino también en condiciones de prescitpitaciones normales, disminuyendo notablemente el caudal del Río Salado, de modo tal que este último se encuentra prácticamente seco en su desembocadura en la Bahía Samborombón, facilitando la entrada de agua salada al sistema (Miretzky, 2001).

Por otro lado, se observó dentro del grupo de variables geoquímicas, que el carbono total y el nitrógeno total son las variables que tienen mayor influencia en la zona centro y norte de Bahía Samborombón (C15, RS y R36), reconociéndose dos grupos que no responden a una distribución geográfica en particular. El primer grupo, G1, (Fig. 4.5) presentamayor relación con el NT y está conformado por muestras que provienen de R36 y RS. A su vez, se observó que las muestras R36(17)M4 y R36(17)M5 están más afectadas por la MO y menos por el CT. En el segundo grupo G2, (Fig.4.5) conformado por muestras de RS y C15, se reconoció una mayor influenciadel contenido de CT.

En relación a los parámetros geoquímicos, fisicoquímicos e hidrogeoquímicos, fueron realizados diversos estudios en bahía Samborombón a partir de los cuales se analizaron diferentes elementos presentes en el suelo, el agua superficial (Schenone et al., 2007, 2008) y el agua subterránea (Carol et al., 2013, 2015). Sin embargo, muy pocos estudian el porcentaje de nitrógeno total, fósforo total, carbono total y materia orgánica en el sedimento. A partir de los resultados obtenidos en el presente trabajo, se observó que los valores promedio de N y P en el sedimento son más altos en la zona norte que en la zona centro de la bahía. Esto mostraría un patrón similar al propuesto por Schenone et al. (2007) para los ríos y canales de Bahía Samborombón. Al momento del muestreo, no se observó en la zona fuentes que promovieran aportes de nitrógeno y fósforo

como ganadería, cultivos o centros urbanos. Por lo cual, es posible que gran parte de los aportes de nutrientes en el estuario lleguen desde los ríos y canales hasta el sedimento, donde una parte es retenida. Schenone et al. (2007) usa la relación de N/P disuelto en el agua, para clasificar como hipertróficos los sistemas hídricos que desembocan en la bahía y plantea que el P es el nutriente limitante en la mayoría de las estaciones. Además, las elevadas concentraciones de nutrientes en las estaciones del norte de la bahía responderían a un mayor aporte de nutrientes desde la cuenca alta donde se desarrolla una intensa actividad agropecuaria (Fernández-Cirelli et al. 2006; Schenone et al., 2007).

Con respecto a los valores de carbono analizados en este trabajo (carbono total), se observó que las muestras más cercanas a los canales presentan valores más altos de carbono total. Si asumimos que el contenido de MO está relacionado con el contenido de CO podemosinferir que los valores son muy similares en algunos puntos, con algunas excepciones de algunas muestras que presentan valores muy altos como las muestras R36M5, R36M4y RS(19)07-1 y otras que presentan valores muy bajos como C15(19)13 y R36M. Los puntos de muestreo que presentan valores altos de carbono total, pero bajos de materia orgánica (R36M3) podría ser indicativo de un alto porcentaje de carbono inorgánico. Las muestras que se localizan en C15 y en el borde de RS presentan porcentajes altos de CT y de MO. Esto sería explicado por un aporte adicional de carbono inorgánico dado que el mismo se puede presentar en la forma de carbonatos por ejemplo como carbonato de calcio (CaCO3) que se halla en los suelos costeros en forma de conchas de moluscos, bivalvos y microorganismos de conchilla calcárea y por erosión pueden llegar desde las capas más profundas al borde del canal. Por otro lado, el contenido de materia orgánica en el sedimento avala la tendencia eutrófica del sistema lo que estaría en congruencia con lo propuesto por Ruiz Nieto et al. (2008), quienes consideraron como eutróficos los sistemas a partir de un contenido orgánico superior al 2 %.

Por otro lado, se registró que la temperatura promedio del agua es más alta que la registrada por Schenone et al. (2008) para los ríos y canales de Bahía Samborombón en temporada de aguas altas (otoño). No obstante, mantiene un patrón similar donde los valores promedios para río Salado y Canal 15 son más bajos que los valores promedio de Punta Rasa, como fue mencionado por los autores previamente citados. Esta diferencia en los valores promedio de los dos trabajos podría explicarse dado que los resultados corresponden a la temporada de verano. En el caso del pH, este posee fundamentalmente valores medios (6-7) aunque se determinaron valores extremos en RS, uno alto (8) y tres bajo (5), reconociéndose diferencias con respeto a los mencionados por Schenone et al. (2008) para la bahía. Los valores más bajos provienen de C15 y los valores más altos se encontraron en R36.

Las cantidades de P que entran a formar parte del drenaje de agua superficial dependen de la cantidad de P presente en el suelo, la topografía, la cobertura vegetal, la duración de intensidad del flujo, el uso de la tierra y la contaminación (Wetzel, 2001). Se determinó que en promedio los valores más altos de fósforo se encontraron en la zona norte (R36), específicamente dentro del canal y los valores más bajos en C15, lo cual concuerda con lo mencionado por Fernández Cirelli et al. (2006) y citado por Schenone et al. (2007)

En base a lo expuesto anteriormente, se reconocio que los resultados obtenidos en el presente trabajo relacionados a parámetros fisicoquímicos como a la sedimentología de la zona de los canales y ríos en la bahía son congruentes con investigaciones previas en la zona. Sin embargo, este estudio aporta un exhaustivo análisis con la generación de nuevos datos que contribuyen a comprender el comportamiento de la zona bajo estudio.

4.3.2 Foraminíferos actuales de la Bahía Samborombón

La composición de los ensambles de foraminíferos recientes de la Bahía Samborombón se caracterizó por la presencia exclusiva de foraminíferos bentónicos, lo cual es común en plataforma interna, como en ambientes marino-marginales y/o transicionales (Boltovskoy 1976; 1979; Boltovskoy et al., 1980). A su vez, el predominio de especies hialinas y aglutinadas fue registrado como una particularidad de ambientes transicionales (Murray, 2006). En la zona sur de la bahía (PR), se determinó un porcentaje más alto de microorganismos porcelanáceos, lo cual es consistente con ambientes costeros con mayor influencia marina y mayor salinidad (Li et al., 2020). Por el contrario, algunas muestras ubicadas en R36 y C15 presentaron un predominio de especies aglutinadas, esta distribución en ambientes intermareales está relacionada con ambientes de marisma alta a media (Avnaim-Katav et al., 2017).

La asociación se caracterizó especialmente por la presencia de *Cribroelphidium gunteri*, *Cribroelphidium excavatum*, *Astrononions* sp.1, *Ammonia parkinsoniana*, *Jadammina polystoma*, *Arenoparrella mexicana*, *Cribroelphidium poeyanum*, *Quinqueloculina milletti*, *Quinqueloculina patagonica*, *Quinqueloculina seminulum*, *Ammonia tepida*, *Elphidium discoidale*, las cuales corresponden a especies registradas en la subprovincia Norpatagonica (Boltovskoy, 1976; Boltovksoy et al., 1980). Asimismo, microfauna similar a la hallada en este trabajo fue registrada para diferentes ambientes marino - marginales y litorales de la provincia de Buenos Aires (Calvo-Marcilese y Pratolongo, 2009 y Laprida et al. 2011), como también en sedimentos actuales de marismas, llanuras de marea, estuarios y lagunas costeras (Belart et al., 2017; Bernasconi et al., 2018; Bouchet et al., 2021; Raposo et al., 2018).

Las especies epifaunales del género Cribroelphidium fueron mas abundantes en la zona media de bahía Samborombón, especialmente en las muestras de C15. Particularmente, C. gunteri y C. excavatum estuvieron muy bien representadas en C15 y en menor medida en la zona intermareal de R36 y la llanura de inundación del Río Salado (RS). Ambas especies fueron encontradas en aguas salobres de la Lagoa dos Patos, Brasil y Río Quequén, Argentina (Boltovskoy et al., 1980). Calvo-Marcilese y Pratolongo (2009) también registraron esas dos especies, en marismas y planicies de marea del estuario de Bahía Blanca (Argentina). Raposo et al. (2018) observaron la presencia de estas especies en la zona de entrada de agua de mar en un sistema lagunar costero, y las asociaron a ambientes con alta hidrodinámica. Cribroelphidium. gunteri se encontró como especie dominante en marismas y lagunas del Golfo de México (Murray, 2006), en ambientes litorales del noreste argentino (Laprida et al., 2011) y en ambiente de plataforma (Bernasconi et al., 2018; Bernasconi y Cusminsky, 2020). C. excavatum es una especie común en sedimentos finos con contenido muy variable de arena, lodo y TOC (Alve y Murray, 1999). También, se puede encontrar en ambientes intermareales a submareales de estuarios, lagunas, plataforma continental y talud (Murray, 2006). Se ha encontrado en la bahía San Blas (Boltovskoy, 1954b), marismas del estuario de Bahía Blanca (Calvo-Marcilesey Pratolongo 2009) y en planicies de inundación y marismas (Müller-Navarra et al., 2016).

Con respecto a la especie *C. poeyanum,* se observó en C15 en menor proporción que *C. gunteri* y *C. excavatum* y en las muestras de Punta Rasa aunque estuvo ausente en Rio Salado y en el canal de Ruta 36. Esta distribución es consistente con la preferencia de esta especie de habitar en

ambientes con mayor influencia salina, aunque es de destacar que *C. poeyanum* es considerada una especie eurihalina de amplia distribución (Eichler et al., 2004) característica de ambientes suboxicos e indicadora de ambientes lagunares profundos o de baja energía (Kaminski, 2012; Wilson et al., 2012). Además, fue encontrada en ambientes marino-marginales más restringidos, lagunas costeras y estuarios (Belart et al., 2017, 2018; Bergin et al., 2006; Calvo-Marcilese yPratolongo, 2009; Camacho et al., 2015; Raposo et al., 2016, 2018), en ambientes de marismas y llanuras de inundación (Scott et al., 2001; Calvo-Marcilese and Pratolongo, 2009), en ambientes litorales de la provincia de Buenos Aires (Laprida et al., 2011) y ambientes de la plataforma continental argentina (Alperin et al., 2008; 2011; Bernasconi et al., 2018).

Las especies mencionadas fueron citadas previamente por Calvo-Marcilese y Pratolongo (2009) y Laprida et al. (2011) como pertenecientes al género *Elphidium*, sin embargo, se reorganizan dentro del género Cribroelphidium .

La especie *Elphidium discoidale* se halló solo en la zona de Punta Rasa. Raposo et al. (2018) hallan esta especie en la zona abierta de la bahía donde la salinidad varía entre hipersalina a mixohalina. Fue registrada en ambientes en aguas salobres y estuarios de la zona de Brasil y Argentina (Boltovskoy et al., 1980; Raposo et al., 2016; Vilela et al., 2004). A su vez, se mencionó para la plataforma continental (Alperin et al., 2011; Eichler et al., 2017).

Individuos del género *Ammonia* se encontraron en más del 90% de las muestras, siendo más abundantes en la zona intermareal de R36 y en la zona de RS, convirtiéndose en las especies dominantes. Las especies del género *Ammonia* se han registrado como organismos infaunales presentes en sedimentos fangosos-arenosos típicos de marismas y lagunas salobres. Es más común encontrarlos en sedimentos de marismas a submareales con contenidos de lodo y TOC muy variables (Murray, 2006). Este género se citó para sitios con grandes variaciones de salinidad, siendo capaz de tolerar salinidades de hasta 50 ups, así como permanecer en sitios con muy baja salinidad (menos de 1 ups), (Koehn-Zaninetti, 1982). La especie *A. parkinsoniana* fue la más abundante, la misma se distribuye en ambientes hipohalinos y de agua dulce del Río de la Plata y Mar Chiquita (Boltovskoy et al., 1980). Fue citada particularmente asociada a marismas con *S. alterniflora* en conjunto a *Haynesina germanica* y una menor proporción de *A. tepida* (Calvo-Marcilese y Pratolongo, 2009). También fue registrada en sitios desprovistos de vegetación, con salinidades elevadas, pero que retienen humedad durante la bajamar. En el caso de *A. tepida* se encuentra en

muestras donde el fósforo y el nitrógeno tomaron valores entre medios a altos con respecto a los valores totales. Asimismo, se observaron altos valores de metales pesados en periodo de aguas bajas y valores bajos de dichos metales en periodos de aguas altas (Schenone et al., (2007). Comúnmente esta especie se relaciona a ambientes bajo estrés porcontaminación de fuentes antropogénicas (Alve, 1995; Culver y Buzas 1995; Sousa et al., 1997; Debenay et al., 1997; Van derZwaan, 2000 y Belart et al., 2017). Asimismo, se considera tolerante a altas concentraciones de metales pesados y alto grado de eutrofización, alto contenido de TOC, bajo pH (Martins et al., 2016).

En la zona de estudio se observó una distribución heterogénea de individuos del género *Astrononion* con buen estado de preservación, restringiéndose a la zona baja del Canal 15. Este género se considera epifaunal - infaunal y se distribuye en sedimentos fangosos desde plataforma interna hasta ambientes batiales (Murray, 2006) y en zonas como la bahíad e San Blas, Argentina (Boltovskoy, 1954a). También, en algunos trabajos registran su distribución en ambientes trasnsicionales como el caso de Calvo-Marcilese y Pratolongo, (2009) quienes encontraron una baja proporción de individuos de este genero para las marismas y llanuras de marea del estuario de Bahía Blanca, Argentina. Dado que estos ejemplares no estuvieron vivos al momento de la colecta, podría inferirse que estos individuos pudieron ser transportados desde las zonas más marinas de plataforma interna hasta las zonas litorales y continentales a través de las olas y las mareas esporádicas.

En el caso de las especies aglutinadas, las más representativas *fueron Arenoparella mexicana, Jadammina polystoma, Trochammina inflata* y *Trochammina ochracea*. Estas especies fueron abundantes en la zona supramareal de R36 y algunas zonas de C15 y están descritas como características de aguas hipohalinas de Argentina (Boltovskoy et al., 1980). A su vez, tienen una amplia distribución geográfica ya que se han registrado como especies características de ambientes de marisma salada en diferentes zonas del mundo y en ambientes estuarinos con alta influencia de agua dulce (Eichler et al., 2004).

El género Arenoparrella se describe como un género epifaunal que habita en sedimentos fangosos y se encuentran principalmente en zonas de marismas e intermareales. En algunos casos fue hallado en zonas batiales de la plataforma superior (Murray, 2006). Arenoparrella mexicana se observó en muestras de Ruta 36 localizadas en el canal de agua y en la zona supramareal. A su vez, en Canal 15 en la zona de marisma media con presencia de vegetación. Esta especie se ha registrado

en marismas del Golfo de México, como en marismas europeas y del norte de California (Kemp et al., 2010), en zonas de manglar o con vegetación por ejemplo *Salicornia-Spartina* (Phleger 1967; Murray, 2006). También se encontró en zonas hipohalinas y de agua dulce de la laguna Dos Patos, Brasil y varias áreas hipohalinas en el norte de Argentina (Boltovskoy et al., 1980).

La especie Jadammina polystoma se observó en muetras de la zona supramareal de R36 donde es la especie más dominante y en C15, donde formaban parte de asociaciones más diversas. Esta es una especie epifaunal que habita en sedimentos finosy escaracterística de ambientesintermarealesde marismas altas (Murray 2006). Jadammina polystoma se encontró en agua dulce del Río Quequén, en Puerto Deseado (Boltovskoy et al., 1980) y en marismas con *S. alterniflora* que crece en la boca del canal Maldonado, en el estuario de Bahía Blanca (Calvo-Marcilese y Pratolongo, 2009).

El género *Trochammina* es considerado epifaunal o infaunal, abarca un amplio rango batimétrico, desde los 0 m hasta > 6 000 m de profundidad, con una amplia distribución geográfica, se registró en ambientes intermareales, de plataforma, batiales y abisales (Murray, 2006). La especie *Trochammina inflata* es herbívora o detritívora (Matera y Lee, 1972) y se puede encontrar en sedimentos de hasta 60 cm de profundidad. Se encontró en las marismas altas y medias de todo el mundo y está ampliamente distribuida en el margen continental argentino como en marismas y llanura de marea del estero de Bahía Blanca (Calvo-Marcilese y Pratolongo, 2009). Por otro lado, *T. ochracea* fue hallada en aguas salobres de la laguna Dos Patos, Río de la Plata, Mar Chiquita y en la costa de la provincia de Buenos Aires (Boltovskoy, 1980; Laprida et al., 2011; Márquez, 2017).

Las especies del género *Quinqueloculina* fueron mas abundantes en las muetras localizadas en PR, principalmente hacia el Oeste, y no se hallaron en el canal de marea. Estos microorganismos son comunes en ambientes marinos e hipersalinos como así también en lagunas hipersalinas, marismas marinas y plataforma (Murray, 2006).

Entre las especies del *Quinqueloculina* se encuentran *Q. seminulum*, que fue citada como una especie dominante en ambientes marino, lagunas costeras, marismas, fiordos y en la plataforma interna.(Murray, 2006). Esta especie fue encontrada a lo largo de la plataforma argentina (Alperin et al., 2008; Bernasconi et al., 2018, Bernasconi 2020). También se la registró en ambientes litorales costeros del norte argentino y Brasil(Eichler et al., 2012; Laprida et al., 2011), tanto como en lagunas, estuarios y marismas (Eichler et al., 2004, 2007;Calvo-Marcilese y Pratolongo, 2009;

Fernández, 2010). *Q. patagónica* se registró en lagunas costeras (Eichler et al., 2004), posee una amplia distribución a lo largo de la plataforma continental argentina (Boltovskoy et al., 1980; Eichler et al., 2012a; Bernasconi et al., 2018) y fue encontrada en la bahía de San Blas, Argentina (Boltovskoy, 1954a). Laprida et al.(2011) la mencionó en ambientes litorales del norte de la costa argentina, en bajas proporciones mientras que Rodrigues et al.(2020) la halló en canales de un estuario dominado por mareas.

La especie *Q. milleti* fue mencionada previamente por otros autores como *Aldenosina milleti*. *S*e registró en lagunas costeras (Debenay et al., 1998; Eichler et al., 2004; Eichler et al., 2007; Raposo et al., 2016, 2018) y bahías (Burone y Pires-Vanin, 2006). A su vez, se halló en diferentes ambientes marino-marginales del Río de La Plata, Mar Chiquita y Río Quequén (Boltovskoy et al., 1980). También, se reconoció su presencia aunque en bajas proporciones en ambientes litorales del norte de la costa argentina por Laprida et al.(2011) y en ambientes de descarga del Río de la Plata al océano Atlántico (Eichler et al., 2012). Es una especie indicadora de ambientes óxicos, alta hidrodinámica y baja concentración de materia orgánica (Kaminski, 2012,Teodoro et al.2010).

B. peruviana estuvo representada en muestras de Canal 15 y Punta Rasa, no obstante, estuvo más representada en la zona con mayor influencia marina. Esta es una especie hialina que posee un amplio rango de distribución, se reconoció en ambientes costeros, de plataforma interna hasta zona batial (Boltovskoy, 1976; Boltovskoy et al., 1980). Posee una amplia distribución a lo largo de toda la plataforma argentina (Bernasconi et al., 2018; Bernasconi, 2020; Bernasconi y Cusminsky, 2020; Eichler et al., 2014). Fue encontrada como dominante en ambientes litorales del noreste argentino (Laprida et al., 2011). No obstante, también se la puede hallar en ambientes marino-marginales como estuarios y lagunas, indicando un aporte de agua marina a estos sitemas, por ejemplo, en áreas aledañas al Canal Tres Brazas (Bahía Blanca), en sectores submareales sometidos a una mayor influencia marina (Cusminsky et al., 2006). A su vez, también la citan para ambientes lagunares indicando la intrusión de agua marina (Eichler et al., 2004).

Las especies del género *Elphidium* se han registrado en sedimentos fangosos y arenosos de la plataforma interna argentina, marismas y lagunas hipersalinas. En el caso de *Elphidium galvestonense* se reportó ocasionalmente en aguas salobres de lagunas costeras y estuarios, por ejemplo, Laguna Dos Patos, Brasil (Murray, 2006; Boltovskoy et al., 1980, Laprida et al. 2011). Además, fue encontrada en ambientes litorales y es características de ambientes fluvio marinos a costeros, salobres y de baja energía (Laprida et al., 2007) como en ambientes moderada a altamente restringidos (Debenay et al.1998). Mientras que *Elphidium articulatum* fue registrado por Bernasconi et al. (2018) en ambientes costeros de la plataforma argentina. En el caso de *C. poeyanum* se la considera característica de aguas continentales, dado que incluye un componente de agua dulce de la descarga continental encontrándose en sedimentos a una profundidad de hasta 50 m (Eichler et al., 2014). Finalmente, ejemplares de la especie *C. gunteri,* fueron citados en ambientes marino-marginales más restringidos, y en lagunas costeras, estuarios y plataforma interna.

4.3.3 Índices de diversidad

Los foraminíferos de la marisma y la planicie de marea de la Bahía Samborombón presentan una diversidad relativamente baja que también se refleja en los índices de H y alpha de Fisher. En cuanto a la diversidad de Shannon-Wiener, valores de H entre 0,4 y 0,2 indicarían un ambiente de alta inestabilidad, mientras que valores superiores a 2,4 indicarían un ambiente marino normal (Buzas y Gibson, 1969, Murray, 2006). Con respecto al índice de Fisher, inicialmente Wright (1972) propone que valores entre 5 y 16 describen ambientes de plataforma marina de salinidad normal, y valores entre 1 y 5 condiciones marinas costeras e hiposalinas. Por su parte, Murray (1991) menciona que valores mayores a 7 reflejarían condiciones normales de ambientes de plataforma a batial o hipersalinos, entre 5 y 7 representan ambientes de plataforma poco profundos y lagunas con salinidad anormal, y valores menores a 5 sugerirían condiciones hiposalinas en general; o marino marginal hipersalino con alta dominancia de algunas especies. Posteriormente, Murray (2006) mencionó que los ambientes marginales marinos y de plataforma salobre tienen valores bajos de α (<4); sin embargo, en ambientes marinos normales y marismas hipersalinas los valores de α son más altos (<6). Por lo que la baja diversidad determinada en el área de estudio puede deberse al hecho de que están asociados a ambientes de alta inestabilidad con condiciones marinas distales a las normales como lo es un ambiente de transición (Buzas y Gibson, 1969; Murray, 2006). Estos valores son consistentes con los mencionados para ambientes extremos como marismas, manglares, lagunas, estuarios, fiordos y deltas (Murray, 2006).

En la zona centro y norte (RS, C15 y R36) de Bahía Samborombón, la baja diversidad encontrada sugiere que la salinidad en el agua es menor que la óptima para el desarrollo normal de los foraminíferos. En cambio, la baja diversidad hallada en la zona sur (PR) estaría relacionada a la inestabilidad de los ambientes litorales o de playa. Aunque, considerando que se analizó la tanatosenosis, esto podría variar si se cosidera por ejemplo las tasas de sediemntación.

Por otro lado, la morfología de los foraminíferos bentónicos está relacionada con las preferencias de microhábitats. Las especies epifaunales tienen paredes con poros que están ausentes o solo en un lado del caparazón, mientras que las especies infaunales tienen poros distribuidos por toda la superficie del caparazón (Corliss y Chen, 1988). La alta relación superficie / volumen de la especie infaunal, así como una alta densidad de poros en el caparazón, se interpretan como adaptaciones a bajas concentraciones de oxígeno dentro del sedimento (Corliss y Chen, 1988; Bernasconi y Cusminsky, 2005). De acuerdo con esto, cuando los niveles de oxígeno se convierten en un factor limitante, las especies epifaunales se ven afectadas primero y su abundancia disminuye (Smart, 2002). La alta productividad algunas veces se asocia con niveles bajos de oxígeno en los sedimentos superficiales como resultado de la oxidación de la materia orgánica; estos factores ambientales reflejan la disponibilidad de alimentos (Hayward et al., 2002) e influyen fuertemente en la distribución de los foraminíferos. En el área de estudio, se observó que las especies epifaunales fueron más abundantes en la zona centro (C15) y sur de la bahía (PR). estas zonas se caracterizaron por presentar valores bajos de nitrógeno en sedimento y porcentajes medios a bajos de materia orgánica. Los organismos epifaunales estuvieron mejor representados en las muestras localizadas en el interior del Canal 15 y Punta Rasa indicando un ambiente con buena oxigenación (Corliss y Chen, 1988). Por otro lado, se observó una correlación positiva entre los organismos epifaunales y la conductividad y una correlación negativa entre los organismos infaunales y la conductividad. Algunos autores sugieren que la conductividad seria un indicador de las concentraciones de nitrógeno total (TN) y nitrato (NO3--N) en aguas subterráneas (Zhang et al., 2022); siendo así, la relación observada podría estar relacionada al nitrógeno presente en el agua.

4.3.4 Análisis tafonómico

En términos generales, en este estudio, los foraminíferos presentaron individuos con buen grado de preservación, reconociendo una fauna autóctona situada donde las condiciones son favorables para su desarrollo, Este grupo tafonómico presentó una correlación positiva con la distancia a la costa y la elevación, en este caso los ambientes más alejados de la costa, son ambientes de menor energía, lo cual promueve la preservación de las conchillas. No obstante, se observaron algunos procesos tafonómicos dentro de las asociaciones, como cambio de coloración, fragmentación y abrasión en algunos ejemplares. En todas las zonas estudiadas se observaron conchillas fracturadas e incluso individuos rotos, la mayor proporción de ellos se reconoció en lugares de alta energía como en la desembocadura del Canal 15 y la zona de Punta Rasa. Este daño podría deberse al estrés ambiental y / o daño mecánico, como resultado del transporte o reelaboración (Yanko et al., 2002; Laprida yBertels-Psotka, 2003). Los individuos con coloración "negra" o marrón oscuro fueron escasos y se registraron en mayor medida en el centro del canal 15 (solo en una muestra) y en R36 dentro del canal y en su desembocadura (solo en dos muestras). Este proceso se produce por la modificación diagenética de la composición mineralógica de las conchillas, mientras que la coloración marrón puede sugerir la presencia de toxinas de origen terrestre debido a la actividad antrópica (Yanko et al., 2002; Laprida y Bertels-Psotka, 2003). En su gran mayoría las muestras presentaron relleno de pirita o un grado de piritización de la conchilla, esto se asocia a ambientes anóxicos con altos contenidos de Fe pirítico, fango y materia orgánica; sin embargo, en este trabajo se observó una correlación negativa con el porcentaje de materia orgánica. Este resultado debe ser contrastado con un análisis mas robusto.

Los diferentes grados de preservación registrados están en concordancia y complementan los escasos estudios previos que sugieren procesos relacionados con la energía del ambiente, la exposición aérea, los procesos de eutrofización y anoxia, entre otros (Laprida et al., 2011).

4.3.3 Foraminíferos y variables ambientales

A partir del análisis de las variables ambientales, se pudo determinar que La zona centro norte de la Bahía Samborombón se diferencia de la zona sur en sus características ambientales y esto se refleja en las asociaciones de foraminíferos presentes.

La asociación de especies determinada para la zona sur de la Bahía Samborombón (PR) correspondió a especies características de ambientes con mayor influencia marina, alta salinidad y por ende mayor conductividad como Q. patagonica, Q. seminulum, E. discoidale, Q. milletti y B. peruviana, lo cual es congruente con los resultados del CCA. También se observaron diferencias en la composición de especies entre las muestras que se localizan en la zona Oeste (PR(19)03, PR(19)02, PR(19)04), las que se localizan en la zona Este (PR(19)01) y las provenientes del canal de marea (PR(19)05). La zona Este corresponde a un ambiente de playa arenosa, de mayor energía, mayor porcentaje de arenas y valores altos de conductividad. La cantidad de individuos rotos (grupo tafonómico C) principalmente del género Quinqueloculina, se relaciona con la alta energía del ambiente. La asociación de especies presentó valores altos de diversidad (H) que coincide con los mencionados para ambientes litorales costeros (Laprida et al., 2011). La especie más abundante fue B. peruviana acompañada por Q. milletti, Q. patagonica, Q. seminulum, A. tepida, A. parkinsoniana, C. excavatum, C. gunteri, C. poeyanum y E. discoidale, en menor proporción. Asociaciones similares fueron reconocidas para la zona litoral costera de norte de la provincia de Buenos Aires en cercanías del área de estudio, particularmente para las zonas de playa distal, playa frontal, cara de playa y duna, donde predomina B. peruviana, Ammonia beccarii y Elphidium discoidale (Laprida et al., 2011). En base a la distribución registrada, la composición de especies se relaciona con un ambiente estuarino, con aportes marinos reflejados en la presencia de especies como E. discoidale y C. poeyanum.

La zona oeste de PR es un ambiente de menor oleaje y menor energía en el área de PR, allí se presentaron los valores más altos en el contenido de lodos para toda esta zona, esto acorde al flujo de sedimento presente en la bahía. Por el contrario, la abundancia de individuos fue baja y los valores de diversidad son bajos comparados con el lado Este de PR. Además, la proporción de organismos rotos (Grupo Tafonómico C) está relacionada con la alta energía del medio reflejada por la abundante presencia de *B. peruviana* y una gran proporción de individuos rotos del género *Quinqueloculina*. En menor cantidad, se encontraron especies como *C. poeyanum*, *A. parkinsoniana*, *Q. patagónica* y *Q. seminulum* que reflejarían un ambiente más somero con características estuarinas.

El canal de marea presenta los valores de abundancia más bajos para el área de muestreo, aunque acompañados de valores de diversidad más altos (H) caracterizado por *B. peruviana*, *C. poeyanum*, en menor proporción *Q. milletti*, *A. parkinsoniana*, *T. inflata* y *C. gunteri*.

La asociación de especies reconocida para la zona centro y norte corresponden principalmente a especies características de ambientes marino-marginales de marismas y llanura de marea. El análisis de correspondencia canónica separa en dos grupos las muestras provenientes de C15, las cuales están mayormente influenciadas por la distancia a la costa y las muestras provenientes de R36 y RS, las cuales no se correlacionan con las variables ambientales analizadas. Sumado a esto, el análisis de nMDS muestra una distribución de especies relacionada a los sub-ambientes presentes en la marisma y las llanuras de inundación. En primer lugar, se observó que las muestras localizadas en la zona de pradera, R36(17)M4 y R36(17)M5 presentan una asociación poco diversa dominada por especies aglutinadas siendo *J. polystoma* la más abundante acompañada por *M. fusca* y *T. inflata*. Esta asociación se registró por otros autores para ambientes de marisma alta con presencia de vegetación.

Las muestras localizadas en la marisma baja de RS e intermareales de R36 presentan una composición de especies similar. Con valores bajos de diversidad y altos valores de abundancia de organismos correspondientes al grupo Tafonómico B, en el área de R36 pudiendo estar relacionado a un sistema eutrófico, dada la coloración marrón que podría sugerir la presencia de compuestos de origen terrestre derivadas de la actividad antrópica (Yanko et al., 2002; Laprida y Bertels-Psotka 2003). La asociación de foraminíferos estuvo dominada por individuos hialinos principalmente del género *Ammonia* y en menor proporción por especies como *C. excavatum, C. gunteri, A. parkinsonia*na y *A. tepida* en el estuario de Bahía Blanca (Calvo-Marcilese y Pratolongo, 2009). Dado que estas especies son típicas de ambientes de agua salobre, esto demuestra la influencia del agua dulce en este sistema (Calvo-Marcilese y Pratolongo, 2009; Martins et al. 2015). Sin embargo, estas lagunas costeras con condiciones ambientales muy diferentes, como la laguna Bizerte (Túnez) que es hipersalina y con un flujo grande y sostenible de nutrientes (Martins et al., 2015). *A. tepida* y *E.*

gunteri se consideran especies oportunistas en áreas con marcada contaminación e impacto antrópico (Cearreta y Leorri, 2000; Calvo-Marcilesey Langer 2010; Calvo-Marcilese, 2011). En este caso, se observó *A. tepida* en zonas con alta a media concentración de fósforo y nitrógeno relacionándose en zonas eutróficas y con una alta carga de metales pesados en temporada de agua bajas (Schenone et al.2007, 2008).

Canal 15 posee una fauna característica de ambientes intermareales o estuarinos, presentando en cambio una asociación muy diferente a las otras áreas de estudio y con características particulares como una distribución no uniforme de las especies. Presenta una alta diversidad en las asociaciones y una alta abundancia de individuos. Las muestras de marisma media se caracterizaron por un aumento considerable en la abundancia de especies aglutinadas como *A. mexicana, J. polystoma, T. inflata,* presentando, además, valores altos de *Astrononion* sp.1 y *C. gunteri*. Además, las muestras ubicadas en las áreas interna y externa del canal (MA: Marisma Alta, MB: Marisma Baja y CA: Canales), caracterizadas por la dominancia de especies epifaunales como *C. poeyanum, C. gunteri* y *C. excavatum.* La diversidad y la abundancia de las asociaciones recientes está frecuentemente determinada por las condiciones ambientales locales. Se describieron distribuciones geográficas irregulares en aguas poco profundas que se correlacionaron con parámetros ambientales locales en sedimentos modernos cerca del área de estudio (Laprida et al., 2011).

En el presente trabajo, la distribución diferencial observada responde a las preferencias ecológicas determinadas para cada taxón las cuales están correlacionadas con variaciones la conductividad dentro del ambiente estuarino y de marisma. Mientras que el análisis del estado de preservación de las conchillas brindó información sobre los procesos que han sufrido los microorganismos estudiados en los sedimentos.

4.4 Conclusiones particulares del capítulo

A partir del análisis de los foraminíferos actuales del margen litoral de la Bahía Samborombón se desprenden las siguientes conclusiones:

- En la Bahía Samborombón se delimitan dos zonas principales, las cuales se hallan caracterizadas por las variaciones de coductividad y tamaño de grano siendo el resultado de los rasgos físicos, geológicos y sedimentológicos como así también debida a la influencia del océano Atlántico, del Río de la Plata, el Río Salado y diferentes canales que recorren la bahía.
- En general, a partir del estudio faunístico, se determinó que la composición de las asociaciones de foraminíferos bentónicos responde principalmente a las diferencias ambientales de conductividad y tamaño de grano, lo cual se evidenció en las diferencias de la composición de los ensambles de foraminíferos de la zona norte-centro y la composición de las asociaciones de foraminíferos de la zona sur.
- En particular, la distribución y abundancia de los foraminíferos bentónicos de la zona nortecentro de Bahía Samborombón responde a los diferentes sub-ambientes presentes en las zonas intermareales y de marisma, las cuales presentan características físicas, químicas y granulométricas propias, sumado a procesos tafonómicos que exponen condiciones particulares, relacionadas fundamentalmente con los niveles de oxigenación, cercanía a la costa y energía del medio.
- Por otro lado, los análisis tafonómicos reflejaron las características de los diferentes ambientes tales como la energía del medio y la existencia de ambientes eutróficos, que también se evidencian en los índices de diversidad, ya que reflejan diferencias entre los ambientes a nivel más general.
- Los resultados de este capítulo muestran un mayor y detallado conocimiento sobre la ecología de los foraminíferos recientes de ambientes transicionales como marismas y llanuras de inundación en la costa litoral argentina.

CAPÍTULO 5. FORAMINÍFEROS HOLOCENOS DE BAHÍA SAMBOROMBÓN

5.1. Antecedentes

La Bahía Samborombón está ubicada sobre el sector oriental de la cuenca sedimentaria del Salado, la cual se caracteriza por el afloramiento en su zona continental de secuencias sedimentarias cuaternarias, intercaladas por paquetes sedimentarios de origen marino de edades pleistocenas y holocenas. Diferentes autores relacionan estos paquetes a eventos transgresivos y regresivos generados por variaciones eustáticas del nivel del mar (por ejemplo Aguirre y Whatley, 1995; Cavallotto et al., 2004; Codignotto y Aguirre, 1993; Colado et al., 1995; Cortelezzi, 1993; Fidalgo et al., 1973; Fucks et al., 2010; Isla et al., 2000; Isla, 1989; Parker, 1990; Schnack y Pirazzoli, 1990; Violante y Parker, 2000, 2004); (Fig. 5.1).

El aumento relativo del nivel del mar (RSL) en el Holoceno comenzó a partir de la última deglaciación, ubicando el máximo transgresivo entre *ca*. 6 000 y 5 500 años AP o en *ca*. 7 000 años según el método estadístico utilizado, el cual decae gradualmente después de este tiempo hasta la posición actual (Prieto et al., 2017). Este máximo transgresivo elevó el nivel del mar ~4 m (Prieto et al., 2017) y generó secuencias sedimentarias y rasgos geomorfológicos característicos en el ambiente continental de la bahía, entre ellos se destacan las formas cordoniformes y diferentes subambientes asociados como llanura costera y marismas (Richiano et al., 2012).

Las primeras menciones de depósitos marinos del Noreste de la provincia de Buenos Aries datan de comienzos del Siglo XVIII con las observaciones de d'Orbigny y Darwin en sus viajes a América (Laprida, 1997). Posteriormente, Ameghino (1881), Doering (1882) y Frenguelli (1946, 1950, 1957) realizaron menciones generales de las diferentes unidades marino-litorales de la costa bonaerense. No obstante, es Cappannini (1949) uno de los primeros autores en realizar aportes para el área de la Bahía Samborombón e integra al Querandinense a todos los sedimentos marinos cuaternarios observados en el área. Más tarde, Tricart (1973) en trabajos de la cuenca baja del río Salado observan tres ingresiones marinas y las denomina Querandinense (Pleistoceno medio), Platense (Pleistoceno superior) y Dunkerkiano (Holoceno).

Figura 5.1. Curvas del nivel relativo del mar (RSL) de los modelos Loess y Gamma. La edad se expresa en miles de años AP. La banda gris representa el rango del máximo nivel del mar inferido por palinomorfos y diatomeas (Prieto et al, 2017). I: inferior, M: medio, S: Superior, msdm: metros sobre el nivel del mar.

A su vez, Fidalgo et al. (1973a, 1973b) reconocen tres ingresiones marinas que fueron agrupadas en las formaciones Pascua y Destacamento Río Salado (Pleistoceno superior) y Las Escobas (Holoceno). Más tarde, Fucks et al. (2010) reorganizan estratigráficamente las secuencias marinas del sector continental de la Bahía Samborombón agrupando los depósitos marinos generados por este último ciclo transgresivo – regresivo en la Formación Canal de las Escobas con cuatro Miembros: Destacamento Río Salado, Canal 18, Cerro de la Gloria y Canal 15.

Estas secuencias cuaternarias se han estudiado desde diferentes disciplinas, incluyendo la micropaleontología debido a su continuidad estratigráfica y a la gran riqueza fosilífera de la zona. Esto ha permitido establecer la presencia de diferentes ambientes depositacionales durante el Holoceno, tales como barreras costeras, planicies de marea, marismas y lagunas costeras.

En los trabajos realizados por Bertels-Psotka y Laprida (1998a, 1998b, 1998c) se estudiaron los ensambles de ostrácodos en secuencias cuaternarias de la Bahía Samborombón y a partir de estas caracterizaron los paleoambientes establecidos durante el cuaternario para el Nordeste de la provincia de Buenos Aires. A su vez, se realizaron análisis palinológicos, a partir de los cuales, se estableció la evolución de las comunidades vegetales y de los ambientes desde *ca*. 7 800 años A.P (Vilanova et al., 2006; Vilanova y Prieto, 2012) y se relacionaron con las variaciones del niveles del mar desde ese momento (Prieto et al., 2017).

Era	Periodo	Epoca		Doering (1882)	Ameghino (1889 1915)	Groeber (1949)	Cappannini (1949)	Tricart (1973)	Fidalgo et	al. (1973 a, b)	Fucks et al (2010)																	
					Piso Ariano			Bico Dupkorkiano		Mb. Cerro de la	Fm. Canal de las Escobas	Mb. Canal 15																
	С	Holoceno	00000	Piso Ariano					Fm. Las Escobas	Gloria		Mb. Cerro de la Gloria																
С	u					Piso Querandiense		FISO DUIIKEIKIalio				Mb. Canal 18																
e	а				Rico Amaronco	Piso Samboronense	Querandine			Mb. Canal 18	25005035	Mb. Destacamento Río Salado																
n	t				FISO AMATERISE																							
0	е		superior					Piso Platense	Fm. Destacar	nento Río Salado																		
z	r										Fm. Puente de Pascua																	
0	n							1			Fm.	Pascua																
i	а	Pleistoceno n	medio	3				Piso Querandinense																				
C	r																											
0	i																											
	0		Inferior	or	ĺ																							

Tabla 5.1. Interpretaciones estratigráficas del área de estudio según diversos autores (modificado de Laprida, 1997).

Luego, se integró información palinológica, geomorfológica y de asociaciones de foraminíferos para determinar las variaciones ambientales ocurridas para el Holoceno tardío y medio en la zona de Canal 15 (Luengo et al., 2018). En relación al estudio de foraminíferos cuaternarios en la Bahía Samborombón se destacan los trabajos realizados por Laprida y Bertels-Psotka (2003) donde analizaron la fauna de foraminíferos bentónicos presentes en sedimentos del Miembro Cerro de la Gloria, localizado en Canal 15. También, Laprida et al (2011) analizaron la distribución, diversidad, composición específica y características tafonómicas de las asociaciones totales de foraminíferos bentónicos en ambientes litorales actuales, con el objetivo de interpretar estas secuencias holocenas.

Las suceciones sedimentarias localizadas en Bahía Samborombón representan archivos claves para reconstruir la historia geomorfológica y los ambientes, particularmente los relacionados con los cambios en el nivel del mar y las condiciones climáticas del Holoceno. Es claro que todos estos trabajos realizados previamente aportan información importante que ayudan a comprender e interpretar los cambios paleoambientales, en particular los eventos transgresivos - regresivos ocurridos en la bahía, y contribuyen a precisar el modelo paleocliamático regional y global. No obstante, en este punto, es necesario llevar a cabo análisis más detallados que otorguen mayor resolución, para determinar los eventos ocurridos durante el Holoceno. En este capítulo se realiza el análisis de dos perfiles localizados sobre el Canal 15 y el río Salado, con el objetivo de determinar los paleoambientes y de aportar una visión general de la evolución ambiental, a partir de los foraminíferos bentónicos.

5.2 Resultados

5.2.1 Perfil PM2

5.2.1.1 Características litológicas y cronología

En la base del perfil, se observó una alternancia de arcillas y arenas finas a limos, de espesor entre 2 y 10 cm, con estratificación paralela y color marrón a marrón verdoso. A los 252 cm, se encontró una capa con alta concentración fosilífera cuya edad radiocarbónica calibrada fue de 6 803-6 286 años cal AP. La alternancia de capas de arcilla y arena se repite a lo largo de toda la secuencia con variaciones de espesor. A los 160 cm, se reconoció un predominio de capas areno-limosas de mayor espesor intercaladas con capas de sedimento arcilloso. A los 128 cm, se observó la presencia de una capa cuya edad radiocarbónica calibrada fue de 6 458 – 5 884 años cal. AP. Por encima de ese nivel, se reconoció un paquete sedimentario areno-limoso de ~ 65 cm de espesor, y de color marrón claro, con pequeñas concreciones de carbonato de calcio del tamaño de grava esparcidas por toda la unidad con gran abundancia de *Tagelus. plebeius* en posición de vida. Desde los 79 cm, hacia el tope de la secuencia, hay sedimentos limo-arenosos, intercalados con capas de arcilla de bajo espesor, de color marrón claro y sin la presencia de moluscos. A los 72 cm, la edad radiocarbónica calibrada obtenida a partir del análisis de materia orgánica fue de 5 489 – 5 117 años cal. AP. La secuencia termina con un suelo estructurado de color marrón oscuro, de aproximadamente 10 a 15 cm de espesor, sobre el cual se encuentra una capa homogénea de material depositado en la creación del Canal 15 que tuvo lugar a principios del Siglo XX (Fig. 5.2).

* En este trabajo 1.Luengo et al. 2021

Figura 5.2. Esquema del Perfil M2, sus respectivas edades radiocarbónicas calibradas y la localización del perfil analizado (Triángulo).

5.2.1.2 Diversidad y abundancia de foraminíferos

Se analizaron un total de 54 muestras, de las cuales 6, localizadas en el tope del perfil, resultaron estériles. En las 48 muestras restantes se identificaron un total de 38 especies agrupadas dentro de 19 géneros. Las mismas correspondieron principalmente al Orden Rotaliina. Las especies más abundantes fueron *Buccella peruviana*, *Cribroelphidium poeyanum*, *Ammonia tepida*, *Ammonia*

parkinsoniana, Rosalina williamsoni y Buliminella elegantissima. Las especies *B. peruviana, C. poeyanum, A. parkinsoniana* y *A. tepida* estuvieron representadas en más del 90 % de los niveles (Tabla 5.1).

El ensamble de foraminíferos estuvo representado principalmente por individuos bentónicos y su abundancia varió entre 1 y 346 individuos por gramo de sedimento seco. Los valores más altos se determinaron en la parte media del perfil y los valores más bajos hacia el tope de este. La riqueza de especies (S) varió entre 1 y 28, a lo largo de la secuencia estos valores fueron en general muy homogéneos (entre 10 y 20), excepto a partir de los 65 cm donde la diversidad decreció drásticamente hasta el tope (Fig. 5.3).

Los individuos con conchillas hialinas predominaron (> 67 %) en todos niveles, mientras que los porcelanáceos se presentaron en menor proporción (<32%). No se observaron ejemplares con la conchilla aglutinada a lo largo de todo el perfil. Las especies hialinas más abundantes fueron *B. peruviana*, *C. poeyanum*, *A. tepida*, *A. parkinsoniana* y las porcelanáceas estuvieron representadas fundamentalmente por especies del género *Quinqueloculina*. Las conchillas porcelanáceas presentaron valores bajos (6-4%) desde la base del perfil hasta los 240 cm, seguido de un aumento (<19%) entre los niveles 233 y 158 cm para decrecer (<11%) entre los 158 a 88 cm (Fig.5.3).

Los valores de H variaron entre 0,6 (40 cm) y 2,6 (158 cm), observándose una disminución de estos valores desde la base hacia el tope. El α de Fisher tomó valores entre 2,6 (153 cm) y 9,3 (158 cm). En general, los individuos encontrados poseen un buen estado de preservación (Grupo Tafonómico A). Entre 1 y 28 % de los especímenes se encontraron fragmentados (Grupo Tafonómico C). Hacia el tope de la secuencia, se identificó un alto porcentaje de organismos con signos de abrasión y /o retrabajo (28 - 90 %) (Grupo Tafonómico D). Entre el 25 y el 75 % correspondió a conchillas que presentaron alguna coloración (Grupo Tafonómico B), (Fig. 5.3).

			eyanum	iiana		i	issima	iense	cavatum	6	nteri	lletti	var. depressulum	s								
Nivel	cm	Buccella peruviana	Cribroelphidium po	Ammonia parkinsor	Ammonia tepida	Rosalina williamsor	Buliminella elegant	Elphidium galvestor	Cribroelphidium ex	Quinqueloculina spi	Cribroelphidium gu	Quinqueloculina mi	Elphidium advenum	Cibicides aknerianu	Bolivina ordinaria	Elphidium spp	Bolivina striatula	Bolivina variabilis	ind/1gramo	Taxa_S	Shannon_H	Fisher_alpha
PM2-T1-03-02	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PM2-T1-08-07	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PM2-T1-09-08	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PIVI2-11-13-12	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PM2-T2-03-02	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PM2-T1-23-22	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PM2-T2-08-07	30	6	4	1	7	0	3	0	0	0	0	0	0	0	0	0	0	0	23	9	1,79	
PM2-T2-13-12	35	8	2	4	4	0	4	3	0	0	2	0	1	1	1	0	0	0	31	19	2,38	
PM2-T2-18-17	40	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0,67	
PM2-T2-25-24	47	22	2	13	0	0	2	3	0	0	3	0	0	0	0	0	0	1	44	9	1,49	L
PM2-T3-08-06	55	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2	1	0,00	
PM2-13-10-08	57	13	6	6	10	0	1	1	1	0	1	0	2	2	1	0	0	1	45	16	2,10	
PM2-T3-16-15	63	5	2	2	0	0	1	2	0	0	2	0	1	0	0	0	0	0	1/	8	1,59	
PM2-T3-22-21	69	11	9	4	8	0	10	0	0	0	1	0	0	2	1	0	0	1	59	18	2.23	
PM2-T3-26-25	73	26	10	10	24	0	10	2	2	0	7	0	0	1	0	1	1	1	98	15	2,05	
PM2-T3-31-30	78	12	5	7	11	0	11	0	1	0	4	0	0	5	1	0	0	0	57	15	2,08	
PM2-T4-05-04	83	15	8	8	5	2	6	0	1	0	3	0	0	0	1	0	0	1	54	22	2,24	
PM2-T4-10-09	88	85	52	17	62	17	15	8	3	0	7	5	15	0	3	2	0	0	318	18	2,23	4,16
PM2-T4-16-15	94	26	8	11	3	9	7	0	2	1	1	0	3	1	0	0	1	0	85	24	2,26	
PM2-T4-21-20	98	62	25	20	7	12	5	9	6	0	8	0	5	0	0	0	0	0	168	17	2,06	4,76
PM2-T4-26-25	103	73	40	30	5	17	8	0	3	0	6	0	4	0	3	0	2	2	206	19	2,05	5,13
PIVI2-15-02-01	108	1/	22	22	5	10	1	12	1	2 5	3	0	0	1	0	1	1	1	200	14	2,09	5.24
PM2-T5-12-11	113	58	22	12	3	10	6	12	9	4	4	0	5	1	0	1	1	0	141	15	1 95	4 31
PM2-T5-17-16	123	68	20	18	21	12	7	10	6	0	12	0	6	5	0	0	4	4	215	22	2.40	6.22
PM2-T6-01-00	128	39	14	7	0	3	0	5	0	0	7	10	4	0	0	1	1	0	97	12	1,85	- /
PM2-T6-06-05	133	137	44	23	6	17	2	21	31	0	33	31	0	0	0	10	0	0	354	13	1,96	2,66
PM2-T6-11-10	138	84	38	8	13	11	0	18	21	0	11	23	19	0	0	1	0	1	254	21	2,28	5,38
PM2-T6-16-15	143	51	23	5	4	7	1	2	12	0	0	4	12	0	0	5	0	0	130	15	1,89	4,48
PM2-T7-02-01	148	53	22	2	1	2	1	11	8	0	3	0	11	0	0	0	0	0	116	11	1,69	2,98
PM2-17-07-06	153	61	29	23	0	14	0	16	/	0	13	10	3	0	0	3	0	0	190	27	1,89	2,62
PM2-T8-04-03	163	83	25	20	2	12	0	19	11	0	2	10	17	0	0	2	2	0	190	17	2,05	9,29
PM2-T8-09-08	168	37	18	. 8	4	7	1	10	3	1	3	10	16	0	0	3	1	1	120	23	2.33	8.26
PM2-T9-01-00	173	106	41	7	1	6	2	0	12	0	25	7	2	0	0	2	0	0	210	16	1,71	3,98
PM2-T9-06-05	178	24	17	8	0	1	3	0	1	0	0	5	0	2	0	1	1	0	69	13	1,86	
PM2-T9-11-10	183	57	32	12	37	27	13	15	8	0	5	22	10	0	5	7	3	0	262	20	2,50	5,03
PM2-T9-16-15	188	7	70	17	17	12	5	24	14	57	2	0	8	6	19	5	0	0	266	13	2,15	3,09
PM2-T9-21-20	193	22	16	11	26	10	28	8	1	36	1	0	1	8	3	0	3	6	210	26	2,60	8,51
PM2-T10-03-02	198	23	9	5	4	4	20	5	2	0	0	6	0	12	1	0	1	1	94	20	2,40	
PIVIZ-110-08-07	203	13	1/	3	1	2	4	5	1	1	0	4	0	0	0	0	0	1	52	13	1,97	
PM2-T10-18-17	208	0 15	0 ⊿	2	2	1	1	2	1	1	0	1	2	0	0	1	0	0	20	12	2 01	
PM2-T11-04-03	218	33	9	6	0	7	4	4	2	3	0	4	0	0	0	0	1	1	74	21	2,13	
PM2-T11-09-08	223	22	6	1	0	3	1	4	0	0	1	0	2	0	0	0	0	0	41	17	1,95	
PM2-T11-14-13	228	22	8	3	2	1	1	5	0	3	0	4	3	0	0	0	0	0	59	18	2,12	
PM2-T11-19-18	233	53	19	19	20	20	11	16	3	75	1	0	7	14	0	0	2	2	270	28	2,59	8,57
PM2-T11-24-23	238	52	33	18	3	7	3	15	1	0	5	16	2	1	0	0	4	0	161	21	2,16	6,36
PM2-T11-29-28	243	19	27	18	21	13	16	0	0	0	0	0	1	0	2	1	3	0	131	16	2,25	4,75
PM2-T11-34-33	248	19	19	38	15	7	7	3	1	0	3	4	0	0	2	0	2	1	149	24	2,38	8,49
PM2-T11-39-38	253	15	10	6	10	6	14	3	1	1	1	0	1	0	4	1	1	0	89	19	2,35	
PIVI2-111-44-43	258	30	- 7	- 24	19	7	33	0	1	0	0	0	5	2	5	1	4	10	146	25	2,44	8,32

Tabla 5.2. Abundancia de foraminíferos más representados (abundancia >2% de la asociación total en más de dos muestras) e índices de diversidad para el perfil PM2. Las especies están organizadas de las más las abundantes a las menos representadas. El índice de Fisher fue calculado para muestras con una abundancia mayor o igual a 100 ind/g.

Figura 5.3. Abundancia, riqueza de especies (S), tipo de pared (hialino, porcelanáceo y aglutinado), índices de Shannon-Wiener (H) y alfa de Fisher (α); Grupos tafonómicos: (A) bien preservados. (B) retrabajados. (C) fragmentado. (D) color oscuro o con signos de piritización. Distribución de valores de proporción de infaunales, BFOI (índice óxico de foraminíferos béntónicos) y IAE (índice de *Ammonia-Elphidium*).

5.2.1.3 Índice de Kaiho (BFOI) e índice Ammonia-Elphidium (IAE)

El porcentaje de individuos infaunales varió entre el 27 y el 75%. El BFOI presentó un rango de valores entre -25 y 0. Y los valores del índice *Ammonia-Elphidium* (IAE) se determinaron entre 8 y 75 (Fig. 5.3).

5.2.1.4 Zonación del perfil PM2

En base a los resultados del análisis de agrupamiento se reconocieron 3 zonas. La zona **PM2-Z1**, que abarcó desde la base de la secuencia hasta el nivel 243 cm. La zona **PM2-Z2** que se ubicó entre los niveles 238 y 83 cm. Esta fue subdividida en **PM2-Z2a** que abarcó desde los 238 hasta los 188 cm y la **PM2-Z2b** que abarcó desde los 183 hasta los 83 cm. Finalmente, la zona **PM2-Z3**, que se extendió desde el nivel 78 cm hasta el nivel 30 cm (Fig.5.4).

Figura 5.4 Distribución de las especies con >2 % en al menos un nivel y análisis de conglomerados mostrando las zonas reconocidas.

PM2-Z1 (258-238 cm): En esta zona se identificaron entre 16 y 25 taxones. La asociación de especies estuvo constituida fundamentalmente por las especies *B. peruviana, C. poeyanum, A. parkinsoniana, A. tepida, R. williamsoni, B. elegantissima, B. ordinaria* y *B. striatula*. Además, se encontraron en menor proporción *Elphidium galvestonense, Cribroelphidium excavatum, Elphidium advenum* var. *depressulum* y *Bolivina variabilis*. La abundancia varió entre 89 y 149 individuos por gramo de sedimento. Los valores de H variaron entre 2,1 y 2,4; los valores del α de Fisher variaron entre 4,5 y 8,3; el IAE tomó valores entre 26 y 76; mientras que el BFOI lo hizo entre -9 y -26. Las especies infaunales variaron entre el 38 y 70 %.

PM2-Z2a (233-188 cm): Esta zona se caracteriza especialmente por la presencia de *B. peruviana, C. poeyanum, A. parkinsoniana, A. tepida, R. williamsoni, B. elegantissima, E. gavestonense, C. excavatum, Q. milletti* y otras especies del género *Quienqueloculina*. La abundancia varió entre 26 y 270 individuos por gramo de sedimento y la diversidad entre 12 y 28 especies. Los Página 93 | 194

valores de H variaron entre 1,8 y 2,6; el α de Fisher varió entre 3,1 y 8,6; los valores de IAE variaron entre 9 y 58 y el BFOI entre -3 y -14,7. Las especies infaunales variaron entre 5% y 53%.

PM2-Z2b (183-83 cm): En esta zona se caracteriza por la presencia *de B. peruviana, C. poeyanum, A. parkinsoniana, A. tepida, R. williamsoni, B. elegantissima, E. gavestonense, C. gunteri.* Además, *E. advenumvar. depressulum* se encontró en menor proporción. La abundancia varió entre 5 y 346 individuos, se identificaron entre 11 y 27especies. Los valores de H variaron entre 1,7 y 2,6 y el α de Fisher varió entre 2,6 y 9,2. Por otro lado, el IEA tomó valores entre 5 y 56. Mientras que los valores de BFOI variaron entre -2,6 y -15 y las formas infaunales entre el 41 y 75%.

PM2-Z3 (78–30 cm): Esta zona se caracterizó por la presencia de *B. peruviana, C. poeyanum, A. parkinsoniana, A. tepida y B. elegantissima*. *B. ordinaria*, y *B. variabilis* se presentaron en muy baja proporción. La abundancia varió entre 1 y 96 individuos, mientras que el valor de H varió entre 0,7 y 2,4. El porcentaje de especies infaunales varió entre 0 y 75 %; el BFOI entre 0 y −17 y el IAE tomó valores entre 0 y 66.

5.2.2 Perfil Salado (PS)

5.2.2.1 Características litológicas y cronología

A lo largo del perfil se observó la presencia de capas finas verde-amarillenta a limos arcillosos castaños verdosos. En la base del perfil, se observó una capa fosilífera compuesta de moluscos de 20 cm cuya edad radiocarbónica calibrada fue de 6 261-5 919 años cal.AP. (Figini et al, 2003). Entre los 98 y los 46 cm se observa un tramo de limo arenoso - arcilloso con estructura prismática. A los 98 cm, se observa una edad radiocarbónica de 4 427-4 056 años cal. AP. (Vilanova y Prieto, 2012). El perfil termina en el contacto con el paleosuelo y tiene una edad de 1 725-1 511 años cal. AP. (Fig.5.5).

Figura 5.5. Esquema del Perfil Salado, sus respectivas edades radiocarbónicas calibradas y la localización del perfil analizado (Círculo azul).

5.2.2.2 Diversidad y abundancia de foraminíferos

Se analizaron un total de 36 muestras correspondientes al perfil Salado (PS). A partir del análisis micropaleontológico se identificaron un total de 31 especies agrupadas dentro de 12 géneros pertenecientes fundametalmente al Orden Rotaliida. Las especies más abundantes fueron *Cribroelphidium poeyanum, Cribroelphidium gunteri, Ammonia tepida, Elphidium galvestonense* y *Ammonia parkinsoniana*. Las especies *C. poeyanum, A. parkinsoniana* y *A. tepida* estuvieron representadas en más del 90 % de las muestras del perfil.

La abundancia absoluta de foraminíferos bentónicos varió entre 2 y 826 individuos por gramo desedimento, observándose los valores más altos en la parte media del perfil entre los niveles 85 y 125 cm y entre los niveles 170 y 160 cm.

Nivel	cm	Cribroelphidium poeyanum	Cribroelphidium gunteri	Ammonia tepida	Elphidium galvestonense	Ammonia parkinsoniana	Elphidium spp	Elphidium articulatum	Cribroelphidium excavatum	Elphidium advenum	Haynesina depressula	Haynesina sp1	Haynesina spp	Ammonia spp	Quinqueloculina milletti	Nonion spp	Ammonia sp1	Quinqueloculina seminulum	Haynesina germanica	Elphidium discoidale	Elphidium margaritaceum	Nonion pauperatum	ind/1gramo	Taxa_S	Shannon_H	Fisher_alpha
PS T9 12-11	2	7	3	8	4	1	1	0	3	1	0	1	0	1	0	0	0	0	1	1	0	0	31	12	2,1	
PS T9 06-07	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	10	2,2	
PS T9 12-11	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0,7	
PS T8 01-02	17	1	0	2	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	6	9	1,9	
PS T8 13-14	22	1	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	3	1,0	
PS T8 08-09	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,0	
PS T8 03-04	32	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	6	1,6	
PS T7 17-18	37	11	6	17	4	8	0	0	3	0	0	6	0	1	0	1	0	0	0	0	0	0	57	9	1,9	
PS T7 13-14	41	60	49	55	18	13	1	0	13	3	3	20	0	3	0	2	0	0	3	0	0	0	245	14	2,0	3,2
PS T7 08-07	46	102	46	94	24	19	33	0	0	24	0	20	0	9	0	0	0	0	7	0	0	6	389	13	2,1	2,6
PS T7 03-04	51	24	42	29	14	11	10	0	0	6	4	0	0	3	0	0	0	0	2	0	0	0	149	13	2,1	3,4
PS T6 13-14	56	41	36	34	5	8	5	0	4	9	0	11	0	5	0	0	0	0	0	0	0	0	160	11	2,0	2,7
PS T6 08-09	61	91	46	43	2	8	2	0	5	6	9	3	0	0	0	0	0	0	0	0	1	0	215	11	1,6	2,5
PS T6 03-04	66	85	62	47	3	3	5	0	4	1	6	1	0	0	0	0	1	0	0	1	0	0	220	13	1,5	3,0
PS T5 12-13	71	142	25	25	9	4	0	4	16	4	14	0	0	0	0	0	0	0	0	0	0	0	246	12	1,5	2,6
PS T5 07-08	76	7	26	17	0	1	2	6	4	3	0	12	0	0	0	0	0	0	0	8	2	0	86	11	2,0	
PS T5 02-03	81	23	51	28	0	4	1	4	5	13	4	5	0	0	0	0	0	0	0	3	0	0	139	11	1,9	2,8
PS T4 20-21	86	126	218	135	21	35	32	65	28	56	39	39	0	0	0	14	2	0	5	0	0	0	826	16	2,3	2,8
PS T4 15 16	91	117	94	44	10	9	9	12	21	8	26	5	0	0	0	0	25	5	0	4	0	0	393	18	2,1	3,9
PS-T4-10-11	96	131	80	60	15	8	14	24	26	1	0	0	25	2	0	9	0	1	0	0	1	0	401	19	2,0	4,1
PS T4 05-06	101	46	51	64	11	19	13	30	30	18	29	0	0	8	1	0	0	1	0	0	3	0	328	17	2,4	3,8
PS T4 00-01	106	63	70	60	13	12	11	34	13	12	25	30	0	7	1	3	0	5	0	0	1	0	373	23	2,5	5,4
PS T3 23-24	107	67	59	32	4	0	3	10	6	6	10	0	0	4	1	4	0	2	0	0	1	0	207	18	1,9	4,7
PS T3 18-19	112	96	104	79	12	7	20	0	0	0	0	18	13	13	1	15	10	1	0	0	0	0	397	18	2,1	3,9
PS T3 12-13	117	69	45	20	5	3	4	6	2	6	0	0	8	0	2	0	0	0	0	0	0	0	171	16	1,8	4,3
PS T3 07-08	122	175	146	55	11	2	44	9	10	0	0	0	21	8	4	0	0	0	0	0	0	1	487	14	1,7	2,7
PS T3 02-03	127	43	10	10	5	2	2	1	0	1	0	0	3	0	1	0	0	0	0	0	0	0	80	19	1,6	
PS T2 21-22	132	49	15	7	6	2	0	1	3	1	0	0	1	0	1	0	0	0	0	0	0	0	87	14	1,5	
PS T2 16-17	137	28	8	8	3	2	0	0	0	4	0	0	3	0	3	0	0	0	0	0	0	0	60	15	1,8	
PS T2 11-12	142	37	20	13	6	4	1	5	4	0	0	0	5	0	1	0	1	1	0	0	0	0	99	17	2,0	
PS T2 06-07	147	16	10	4	5	1	1	0	1	0	0	0	3	0	1	0	1	1	0	0	0	0	46	17	2,0	
PS T2 00-01	152	55	24	8	8	7	5	0	2	0	0	0	2	1	3	1	0	2	0	0	0	0	121	18	1,9	5,8
PS T1 15-16	157	52	28	44	15	24	3	0	5	0	0	0	19	3	10	1	0	3	0	0	2	0	216	22	2,2	6,1
PS T1 10-11	162	160	93	67	41	16	17	0	0	0	0	0	24	3	10	1	0	6	0	0	0	0	447	15	1,9	3,0
PS T1 05-06	167	39	34	14	10	11	2	2	0	0	0	0	5	1	4	0	0	3	0	0	0	0	128	17	2,0	5,2
PS T1 00-01	171	113	77	67	55	28	6	6	9	1	16	0	14	5	20	0	0	5	0	0	2	0	431	21	2,2	4,6

Tabla 5.3. Abundancia de los foraminíferos más representados (abundancia >2% de la asociación total en más de dos muestras) e índices de diversidad para el perfil PS. Las especies están organizadas de las más abundantes a las menos representadas. El índice de Fisher fue calculado para muestras con una abundancia mayor o igual a 100 ind/g.

Por otro lado, los valores más bajos se observaron en el tope del perfil entre los niveles 32 y 2 cm. La riqueza de especies (S) varió entre 1 y 23 especies a lo largo de la secuencia evidenciándose una tendencia a aumentar hacia la base (Fig. 5.6).

Las conchillas hialinas predominaron (> 93 %). Los individuos porcelanáceos se presentaron en menor proporción (< 7 %) desde los 75 cm hasta la base del perfil. No se observaron conchillas aglutinadas a lo largo del perfil. Las especies hialinas más abundantes fueron *C. poeyanum, C. gunteri, A. tepida, E. galvestonense* y *A. parkinsoniana* representando al menos el 73% del total de la asociación. Las conchillas porcelanáceas estuvieron representadas principalmente por especies del género *Quinqueloculina* (Fig. 5.6, Tabla 5.3).

Los valores de H variaron entre 0 (27 cm) y 2,5 (106 cm). El índice alfa de Fisher tomó valores entre 2,5 y 6,1 en los niveles 61 y 137 cm, respectivamente. En general, los individuos encontrados a lo largo de la secuencia se encontraron bien preservados (Grupo Tafonómico A). Entre 1 y 25 % de los especímenes estuvieron fragmentados (Grupo Tafonómico C), particularmente en el nivel 25 cm el 100 % de los organismos se encontraban fragmentados. Además, hacia el tope de la secuencia, entre el 1 y el 50 % de las conchillas presentaron signos de abrasión y /o retrabajo (Grupo Tafonómico D). Entre el 1 y 7 % de las conchillas presentaron alguna coloración (Grupo Tafonómico B) (Fig. 5.6).

5.2.2.3 Índice de Kaiho (BFOI) e índice Ammonia-Elphidium (IAE)

El porcentaje de individuos infaunales fue mayor al 90 % en casi todo el perfil. El BFOI presentó un rango entre -0,4 y 0, mientras que los valores del IAE presentó valores entre 10 y 77 (Fig. 5.6).

Figura 5.6. Abundancia, riqueza de especies (S), tipo de pared (hialino, porcelanáceo y aglutinado), índices de Shannon-Wiener (H) y alfa de Fisher (α); grupos tafonómicos: (A) bien conservados. (B) retrabajados. (C) fragmentado. (D) Color oscuro o con signos de piritización. Distribución de valores de proporción de infaunales, BFOI (índice óxico de foraminíferos bénticos) y IAE (índice de*Ammonia-Elphidium*).

5.2.2.4 Zonación del perfil PS

En base al análisis de agrupamiento se pudieron diferenciar 3 zonas: la primera zona **PS-Z1** que se localiza desde la base hasta los 117 cm, la zona **PS-Z2** que se ubicó entre los niveles 112 y 35 cm y la tercera zona **PS-Z3** abarcó desde los 32 cm hasta el tope de la secuencia (Fig. 5.7).

PS2-Z1 (171-117 cm): En esta zona se identificaron entre 14 y 22 especies siendo las más representadas *C. poeyanum, C. gunteri, A. tepida, E. galvestonense* y *A. parkinsoniana*. Dentro del ensamblese se observó la presencia en menor proporción de individuos de los géneros *Haynesina* y *Ammonia,* cuya determinación a nivel específico no se pudo realizar debido a su pequeño tamaño. A su vez, se reconocieron ejemplares de las especies *Quinqueloculina milletti* y *Quinqueloculina seminulum.* Las abundancias variaron entre 46 y 486 individuos. Los valores de H variaron entre 1,4 y 2,3; los valores de α entre 2,7 y 8,6; el IAE entre 10 y 40 mientras que el BFOI varió entre -0,4 y 0. Las especies infaunales variaron entre el 91 y 99 %.

PS-Z2 (112-31 cm): En esta zona se determinaron entre 9 y 23 especies. El ensamble se caracterizó por estar integrado especialmente por *C. poeyanum, C. gunteri, A. tepida, E. galvestonense* y *A. parkinsoniana*. En menor proporción, se encontraron especies del género *Haynesina* como *H. depressula* y *H. germanica*, además de *Elphidium articulatum, Cribroelphidium excavatum* y *Elphidium advenum*. La abundancia varió entre 55 y 826 individuos por gramo de sedimento. Los valores de H variaron entre 1,5 y 2,5; el índice α varió entre 2,5 y 5,3; los valores del IAE variaron entre 12 y 77 y el BFOI entre 0,3 y 0. Las especies infaunales variaron entre 86 y 100 %.

PS-Z3 (32-0 cm): En esta zona la riqueza de especies varió entre 6 y 12. El ensamble se caracterizó por la presencia de ejemplares de las especies *C. poeyanum, A. tepida, E. galvestonense y A. parkinsoniana*. La abundancia varió entre 1 y 31 individuos por gramo de sedimento, mientras que los valores de H variaron entre 0 y 2,1; el IEA entre 0 y 50 y los valores de BFOI resultaron 0. Las formas infaunales variaron entre el 50 y 100 %.

Figura 5.7. Distribución de las especies con abundancia >2% en al menos una muestra y análisis de conglomerados mostrando las zonas reconocidas.

5.2.3 Comparación entre fauna fósil y actual

A partir del análisis de escalamiento multidimensional no paramétrico (nMDS) se obtuvieron valores de Stress igual a 0,15 y de ajuste de regresión no paramétrica de 0,98; indicando que la representación de los datos es satisfactoria. En la representación gráfica podemos observar que existen diferencias entre los ensambles de foraminíferos encontrados en los perfiles (PS, PM) y las muestras superficiales (PR, R36 A y B, C15, RS) (Fig. 5.8).

Figura 5.8. Diagrama bidimensional obtenido a partir del análisis nMDS, donde se observa la distribución de las especies y los sitios. Los puntos grises hacen referencia a los puntos de muestreo.

Se identificaron un total de 105 especies de foraminíferos bentónicos. Específicamente 73 especies en el perfil PM2, 31 en el perfil PS y 59 en las muestras superficiales. Entre los set muestras se comparten 20 especies, características de ambientes transicionales (Tabla. 5.4).

Elphidium macellum, Elphidium discoidale, Elphidium articulatum, Elphidium advenum, Elphidium galvestonense, Elphidium margaritaceum, Elphidium sp. 1, Cribroelphidium excavatum, Cribroelphidium gunteri, Cribroelphidium poeyanum, Ammonia tepida, Ammonia parkinsoniana, Ammonia sp. ,Bolivina pseudoplicata, Bolivina striatula, Quinqueloculina seminulum, Quinqueloculina milletti, Quinqueloculina patagónica, Nonion pauperatum, Buliminella elegantissimaAmmonia sp. 2Haynesinas p.1 Bolivina translusens Bulimina gibba Cassidulina laevigata Cassidulina sppBolivina sp.1 Cribroelphidium gunteri tipica Nonion affinis Nonion barleanunBolivina sp.3 Cornuspira planorbis Hanzawaia boueana Lagena sp.1 Lagena sp5Elphidium divarezianum Fisurina quiadrilobulata Fisurina seminargninata Oolina globosa Lagena leavis Oolina lineata Pyrgo cuadrata Pyrgo sp.1Nonion barleanunOolina lineata Pyrgo sp.1 Quinqueloculina sp4 Robulus limbosus Triloculina sp.2Triboclipation adammina polystoma	PM2	PS	Recientes								
Builminelia elegantissinaAmmonia sp. 2Haynesinas p.1Bolivina psedoplicataBolivina translusensBolivina sp.1Cibicidoides sp.3Bulimina cf. patagonicaCribroelphidium gunteri tipicaCornuspira planorbisBulimina gibbaNonion affinisHanzawaia boueanaCassidulina laevigataNonion barleanunLagena sp.1Cassidulina sppLagena sp5Nonionella chilensisElphidium alvarezianumOolinasp.1Parafisulina cuatricostulataFisurina quiadrilobulataParafisulina sp.1Porafisulina cuatricostulataFisurina seminargninataPyrgo sp.5pyrgo rigensGlobocacidulina subglobosaTriloculina oblongaQuinqueloculina lamarckianaOolina lineataPyrgo sp.1Trochammina ochraceaPyrgo sp.1Quinqueloculina sp4Arenoparrella mexicanaTriloculina sp.2Triloculina sp.2Trochammina oplystoma	Elphidium macellum, Elphidium discoidale, Elphidium articulatum, Elphidium advenum, Elphidium galvestonense, Elphidium margaritaceum, Elphidium sp. 1, Cribroelphidium excavatum, Cribroelphidium gunteri, Cribroelphidium poeyanum, Ammonia tepida, Ammonia parkinsoniana, Ammonia sp. ,Bolivina pseudoplicata, Bolivina striatula, Quinqueloculina seminulum, Quinqueloculina milletti, Quinqueloculina patagónica, Nonion pauperatum,										
Bolivina difformisDiscorbis isabelianusLagena asperaTriloculina cultrateTriloculina sp. 3Cibicidoides mckannaiDiscorbis valvulataTrifarina angulosaOolina meloElphidium sp. 2Bolivina compactaBolivina tortuosaDiscorbis berthelotiBulimina patagonica	Buliminella elegantissimaAmmonia sp. 2Bolivina translusensBulimina cf. patagonicaBulimina gibbaCassidulina laevigataCassidulina sppEhrenbergina pupaElphidium alvarezianumFisurina quiadrilobulataFisurina lucidaFisurina seminargninataGlobocacidulina sp. 1Globocasidulina subglobosaLagena leavisOolina globosaOolina lineataPyrgo cuadrataPyrgo sp. 1Quinqueloculina sp4Robulus limbosusTriloculina sp. 2Bolivina difformisDiscorbis isabelianusLagena asperaTriloculina sp. 3Cibicidoides mckannaiDiscorbis valvulataTrifarina angulosaOolina meloElphidium sp. 2Bolivina compactaBolivina tortuosaDiscorbis berthelotiBulimina patagonica	Haynesinas p.1 Bolivina sp.1 Cribroelphidium gunteri tipica Nonion affinis Nonion barleanun	Bolivina psedoplicata Cibicidoides sp.3 Cornuspira planorbis Hanzawaia boueana Lagena sp. 1 Lagena sp5 Nonionella chilensis Oolinasp. 1 Parafisulina cuatricostulata Pullenia sp.1 Pyrgo sp.5 pyrgo rigens Triloculina oblonga Quinqueloculina lamarckiana Astrononionsp. 1 Trochammina ochracea Arenoparrella mexicana Trochammina inflata Jadammina polystoma								

 Tabla 5.4. Especies exclusivas y compartidas entre los perfiles y las muestras superficiales.

5.3 Discusión

5.3.1 Foraminíferos holocenos de la Bahía Samborombón

Las especies de foraminíferos bentónicos más abundantes identificadas a lo largo de los perfiles PM2 y PS fueron: *Buccella peruviana, Cribroelphidium poeyanum, Ammonia tepida, Ammonia parkinsoniana, Rosalina williamsoni, Buliminella elegantissima* y *Elphidium galvestonense*. Estas especies fueron reconocidas para la provincia zoogeográfica de Argentina, principalmente para la subprovincia Nordpatagónica (Boltovskoy, 1976). A su vez, se encontraron en sucesiones sedimentarias holocenas situadas en la Bahía Samborombón (Laprida y Bertels-Psotka, 2003; Laprida et al., 2007; Luengo et al., 2018; Luengo et al., 2021) y en zonas cercanas al área de estudio como en el estuario de Bahía Blanca (Calvo-Marcilese et al., 2011, 2013; Cusminsky et al., 2009) la planicie costera pampeana y la planicie costera de la laguna de Mar Chiquita (Márquez et al., 2016; Márquez y Ferrero, 2011).

Por otro lado, dichas especies se econtraronen los sedimentos recientes de Bahía Samborombón (Capítulo 4) a excepción de las especies *Rosalina williamsoni, Haynesina* sp. y *Buliminella elegantissima*. Dicha asociación se ha registrado previamente en sedimentos recientes de ambientes de marisma y llanuras de marea del estuario de Bahía Blanca (Calvo-Marcilese y Pratolongo, 2009), ambientes litorales actuales del norte de la provincia de Buenos Aires (Laprida et al., 2011) y en ambientes de plataforma (Bernasconi et al., 2018; Bernasconi, 2020, Bernasconi y Cusminsky 2020, entre otros).

Entre las especies exclusivas halladas en los sedimentos holocenos se encuentra *R. williamsoni,* que es una especie común de ambientes de plataforma. Esta especie se distribuyó en el Sur-Oeste de la provincia de Buenos Aires y es citada como indicadora de ambientes bien oxigenados y alta energía hidordinámica de fondo, asociados con bajas concentraciones de materia orgánica (Teodoro et al., 2010). También fue mencionada en anambientes estuarinos (Rodrigues et al., 2020) y en la bahía de Ubatuba en Brasil (Burone y Pires-Vanin, 2006), aunque en ambos casos con baja representación.

En el caso de *B. elegantissima* es una especie común en diversos ambientes de deplataforma. como también en ambientes más profundos hasta batiales (Murray, 2006; Bernasconi et al.,

2009;Bernasconi et al., 2018). Sin embargo, se la halló en ambientes marino-marginales como lagunas costeras y ambientes lagunares (Raposo et al., 2018) y en baja proporción en ambientes de llanura de inundación (Calvo-Marcilese, 2011). Esta especie fue asociada a ambientes estresados con altas concentraciones de MO provenientes de fuentes naturales o antrópicas y deficientes de oxígeno disuelto (Clemente et al., 2015; Eichler et al., 2003).

Otro de los géneros determinados en este trabajo, exclusivo de sedimentos holocenos, fue el género *Haynesina* que reúne individuos infaunales, característicos de ambientes lodosos o limosos, habitan ambientes de marismas, lagunas y plataforma interna (Murray, 2006). *Haynesina. depressula* se ha mencionado en aguas someras a 20 m en ambientes protegidos de las mareas (Hayward, 2014).

Las especies mencionadas se han identificado en sedimentos correspondientes al Holoceno medio del Mb. Cerro de la Gloria, Fm Canal de Las Escobas, en Bahía Samborombón (Laprida y Bertels-Psotka, 2003). Siendo las más abundantes *Ammonia beccarii parkinsoniana*, *Ammonia beccarii beccarii, B. peruviana, D. wiliamsoni, E. discoidale, Q. seminulum* y *E. gunteri.* También, se determinó la predominancia de la especie *A. beccarii* en el Mb. Cerro de la Gloria de la Fm. Canal de Las Escobas, localizada hacia el sur de la bahía (Laprida et al., 2011). Más tarde, se observó la presencia de especies como *Elphidium* aff. *poeyanum, A. pakinsoniana, E. gunteri* una baja proporción de *B. peruviana* en sedimentos procedentes de la zona central de Bahía Samborombón, específicamente del Mb. Canal 15 de la Fm Canal de Las Escobas, correspondientes al Holoceno superior (Luengo et al., 2018).

A nivel regional, también se han registrado estas especies en sedimentos holocenosen dos secuenias localizadas en el estuario de Bahía Blanca (Calvo-Marcilese et al., 2011). *Elphidium. gunteri, E.* aff. *poeyanum* I y II y *Q. seminulum* y en menor proporción *A. parkinsoniana* y *A. tepida*. Asimismo, se encontró una gran abundancia de *B. peruviana, E.* aff. *E. clavatum, E. gunteri* y*E.* aff. *poeyanum* I y II y *A. parkinsoniana* y *A. tepida* en menor proporciónen el interior del estuario Bahía Blanca (Cusminsky et al., 2009). Al sur del área de estudio, en la zona de Mar Chiquita Márquez y Ferrero (2011) analizaron sedimentos de la Fm. Mar chiquita, siendo las especies más abundantes *B. peruviana* f. *campsi, A. beccarii, E. discoidale* y *E. gunteri*.

Más tarde, Márquez et al., (2016) analizaron una secuencia cerca de Las Brusquitas, provincia de Buenos Aires y se reconoció el predominio de especies como *B. periviana*, *A.*

parkinsoniana, A tepida, E.gunteri, Spirilina sp.y E. margaritaceum. Finalmente, Márquez (2019) analizó sedimentos ubicados sobre la ruta 11 en cercanías de Villa Gessel, Buenos Aires, en la cual se registraron especies como H. depresula, B peruviana, A. parkinsoniana, A. tepida, E. discoidale, E. excavatum, E. galvestonenese, E. gunteri, E. articulatum y E. margaritaceum como las más abundantes.

5.3.2 Interpretación paleoambiental del perfil PM2

Las variaciones relativas del nivel del mar en el Holoceno generaron cambios en los ambientes de Bahía Samborombón. La secuencia comprende un rango de edad entre ~ 6 803 – 6 286 años cal. AP y ~ 5 489 – 5 117 – años cal. AP., tiempo en el cual el nivel del mar alcanzó el máximo trasngresivo (Prieto et al., 2017; Violante et al., 2001).

5.3.2.1 Tafonomía e interpretación de los índices

Los individuos con conchillas hialinas predominaron (> 67 %) en todos los niveles y los individuos porcelanáceos se presentaron en menor proporción (<32%). No se observaron ejemplares con la conchilla aglutinada a lo largo del perfil. Las especies hialinas más abundantes fueron *B. peruviana, C. poeyanum, A. tepida, A. parkinsoniana* y las especies porcelanáceas estuvieron representadas mayormente por especies del género *Quinqueloculina*. Basado en el diagrama triangular propuesto por Murray (1973) se infiere la presencia de un paleoambiente depositacional de laguna hipohalina, para este intervalo de tiempo.

En general, las conchillas se encontraron en buen estado de preservación en todo el perfil (Grupo Tafonómico A). En la base, se reconoció un aumento en la proporción de conchillas con coloración marrón (Grupo Tafonómico B); lo que podría ser el resultado de modificaciones diagenéticas en la composición mineralógica, como efecto del reemplazo parcial de carbonatos por sulfuros o recubrimiento de pirita (Martin, 1999). Este estado particular de conservación podría sugerir que las conchillas han estado expuestas a condiciones reductoras (Martin, 1999). La idea de

un ambiente con condiciones de baja oxigenación en la base del perfil es sustentada por la presencia de formas infaunales como Bolivina ordinaria, Bolivina striatula y B. elegantissima, las cuales se caracterizan por ser capaces de tolerar ambientes con bajas concentraciones de oxígeno, alto flujo de materia orgánica y baja energía de fondo (Teodoro et al., 2010). Entre los 248 a 62 cm, las conchillas presentaron un alto grado de preservación con una baja proporción de conchillas fragmentadas (Grupo Tafonómico A y C). Estas características sugieren un ambiente de mayor energía de fondo ya que la fragmentación estaría reflejando que estos elementos estuvieron expuestos a disolución, re-elaboración o transporte por acción de mareas, olas u otro tipo de corrientes (Laprida y Bertels-Psotka, 2003). A partir de los 62 cm hasta el tope del perfil, se observaron en menor medida elementos fragmentados y con color alterado (Grupos Tafonómicos C y B). Esto refleja que las asociaciones de foraminíferos bentónicos en esta sección son princialmente autóctonas, acompañados de algunos elementos alóctonos. Por encima de los 62 cm hacia el tope, se determinó una clara disminución en la abundancia de foraminíferos entre 1y 45 individuos por gramo, y la mayoría de las conchillas presentaron coloración marrón. Además, se observó una alta proporción de conchillas retrabajadas, lo cual reflejaría parcialmente un origen alóctono de la fauna. En efecto, Laprida y Bertels-Psotka (2003) sugieren que diferentes historias bioestratinómicas serían indicativas de un origen diferente, es decir, que no se originarían en el mismo lugar o tiempo. Esta parte de la sección se depositó después de ~ 5 600 – 5 430 años cal. AP., coincidiendo con el inicio de la fase regresiva del nivel del mar y la formación de dorsales de playa bioclásticas de ~400 a 500 m de ancho (Luengo et al., 2018). En estos pulsos de descenso del nivel y formación de las dorsales, se presentaron eventos erosivos de antiguos depósitos de fondo (Codignotto y Aguirre, 1993), lo cual puede influir en la depositación de conchillas retrabajadas.

La abundancia y diversidad de especies (S) fue variable, con valores relativamente bajos a lo largo del perfil. Tanto la abundancia como la diversidad de especies alcanzaron su valor máximo en el nivel de 233 cm con 28 especies y 270 individuos. Estos parámetros de abundancia y diversidad son comparables con los encontrados en el estuario de Bahía Blanca por Calvo-Marciliese et al. (2011) y para los ambientes costeros del Noreste de la provincia de Buenos Aires por Laprida y Bertels-Psotka (2003). A su vez, varios autores relacionan la baja diversidad específica de foraminíferos con condiciones ambientales inestables como marismas, lagunas o estuarios, mientras que los altos valores de diversidad indicarían condiciones marinas normales (Boltovskoy y Wright, 1976; Haynes, 1981; Murray, 1991, 2006).

En cuanto a la diversidad de Shannon-Wiener (H) los resultados fueron <2,4, con valores ligeramente superiores en ciertos niveles. Estos resultados sugieren condiciones inestables a lo largo del perfil que distan de un ambiente marino normal, los cuales son consistentes con los registrados por Murray (2006) para ambientes de marismas o marino marginales salobres.

En el caso del índice alfa de Fisher, a lo largo de la secuencia se registraron, en general, valores inferiores a 7 y una ligera tendencia decreciente hacia el tope, lo que indicaría un ambiente sedimentario hiposalino. En particular, se encontró mayor diversidad en algunos de los niveles basales e intermedios (248, 233, 193 y 158 cm), los cuales reflejarían un ambiente con mayor influencia marina (Fig.5.6). El aumento de la diversidad de foraminíferos en estos niveles podría estar relacionada con la introducción de conchillas a la llanura de inundación por efecto de las olas y mareas, lo cual aumentaría el número de especies dentro de la asociación (Wang y Murray, 1983). En esos niveles, se encontraron ejemplares fragmentados, con signos de abrasión y fragmentación indicando un ambiente con alta energía, lo que se evidencia con la presencia de especies epifaunales de los géneros *Quinqueloculina, Rosalina y Discorbis*.

Cuando los niveles de oxígeno se convierten en un factor limitante, las formas epifaunales son las primeras afectadas y su abundancia tenderá a dirminuir (Corliss, 1985; Smart, 2002). Estos bajos niveles de oxígeno en la superficie de los sedimentos frecuentemente se asocian con una alta productividad, causada por la oxidación de la materia orgánica (Corliss y Chen, 1988). En la base de la secuencia, la alta abundancia de especímenes infaunales (~70%) estaría indicando condiciones de baja oxigenación. Desde los 253 cm, la proporción de ejemplares infaunales disminuyó (53 - 5,6 %) hasta el nivel 158 cm, desde donde ocurrió un nuevo aumento. Asimismo, los valores de BFOI a lo largo de la secuencia fueron de –26 en los niveles 248 cm y 0 en el nivel 40 cm lo que indicaría condiciones subóxicas, entre 0,3 y 1,5 mL/L de oxígeno disuelto; mostrando variaciones que concuerdan con la relación epifaunal-infaunal determinada. En un ambiente con condiciones subóxicas sería esperable un predominio de especies infaunales; sin embargo, en condiciones inestables podrían se podría generar una excepción al esquema básico del modelo TROX (Jorissen et al., 1995). Algunos autores sugieren que ciertas especies epifaunales oportunistas tienen mucho éxito en la colonización de nichos vacíos (Barmawidjaja et al., 1992; Gooday, 1993). Jorissen et al.

(1995) mencionaron que, en el caso de la re-oxigenación estacional de ambientes anóxicos donde la mayor parte de la producción de foraminíferos se concentra en un período corto, la fauna resultante podría estar representada por especies pioneras oportunistas epifaunales.

El índice *Ammonia-Elphidium* (IAE) también ilustra los niveles de oxigenación de los ambientes costeros, ya que ambos géneros son resistentes a condiciones reductoras (Sen Gupta et al., 1996; Sen Gupta y Platon, 2006; Pregnolato et al., 2018). No obstante, los individuos del género *Ammonia* tiene mayor resistencia que el género *Elphidium* para tolerar condiciones bajas de oxígeno, y ambos son abundantes en la zona costera (Pregnolato et al., 2018). Como estos géneros están ampliamente distribuidos y pueden preservarse fácilmente en el registro fósil, se convierten en una herramienta útil para evaluar el nivel de oxigenación en diversos paleoambientes (Sen Gupta y Platon, 2006). En este trabajo se determinaron valores altos del índice de *Ammonia-Elphidium*, lo que sugiere condiciones de bajas concentraciones de oxígeno. En este sentido, los valores altos de IAE en la base del perfil (49 –76 IAE) sugieren bajas concentraciones de oxígeno en el ambiente. A partir del nivel de 238 cm, los valores de IAE son variables, disminuyendo hacia el nivel de 153 cm (58,1-7,6 IAE), donde hay un aumento de los niveles de oxigenación. A partir de los 148 cm, los valores de este índice hasta aproximadamente los 60 cm, reflejaron una disminución de los niveles de oxigenación.

Sin embargo, además de la deficiencia de oxígeno, la disminución de la salinidad podría elevar el nivel del IAE (Karlsenet al., 2000). Un aumento gradual del contenido de salinidad podría estar indicado por el aumento de *Elphidium* y la disminución en el número de individuos del género *Ammonia* (Brewster-Wingard et al., 1996). Por lo tanto, el IAE funcionaría mejor como marcador de hipoxia donde no haya variaciones históricas significativas en la salinidad (Sen Gupta y Platon, 2006). Según Brewster-Wingard et al. (1996), asociaciones compuestas principalmente por *Ammonia*-*Elphidium* indicaría condiciones oligohalinas a mesohalinas con salinidades de 5 a 18 psu. Un aumento gradual de la salinidad se reflejaría en un aumento en la proporción de *Elphidium* y una disminución en el número de individuos del género *Ammonia*. En este contexto, hacia la base, el aumento de *Ammonia* podría responder a bajos niveles de oxigenación en el sistema; por el contrario, el aumento de *Ammonia* hacia la parte superior de la secuencia podría deberse a la influencia de los sistemas lóticos, lo cual es consistente con las especies registradas. Por lo tanto, el aumento en los valores de IAE no estaría relacionado con un evento de baja oxigenación, sino con

un evento de baja salinidad, mencionado por Bertels-Psotka y Laprida (1998a) para la parte superior del Mb. Canal 18.

Los últimos tres índices mencionados anteriormente (IAE, BFOI, Infaunal) reflejaron condiciones de baja oxigenación (0.3–1.5 mL/L de oxígeno disuelto) aproximadamente entre 6 880 – 6 620 años cal. AP. y 5 600–5 430 años cal. AP. Las variaciones detectadas reflejaron un ambiente de baja oxigenación antes de 6 880 – 6 620 años cal. AP., probablemente seguido por un evento de re-oxigenación derivado del flujo de agua de mar hacia la zona de estudio. Después de *ca*. 6 500–6 250 a 5 590–5 430 años cal. AP., se produjo un paso a unas condiciones de menor energía y salinidad. Luego, *ca*. 5 600–5 430 años cal. AP. se reconoció un retorno al ambiente salobre con niveles más bajos de oxígeno.

5.3.2.2 Ensamble de foraminíferos

Las especies de foraminíferos bentónicos más abundantes identificadas a lo largo del perfil PM2 fueron *B. peruviana*, *C. poeyanum*, *A. parkinsonianav y A. tepida*. Las formas miliólidas y biseriadas se encontraron en menor proporcion y presentaron una distribución variable a lo largo de todo el perfil. Estas especies han sido registradas en la provincia zoogeográfica de Argentina, principalmente en la subprovincia Nordpatagónica. Además, se registraron tanto en sedimentos holocenos (Cusminsky et al., 2009; Laprida et al., 2007; Laprida y Bertels-Psotka, 2003; Luengo et al., 2018, entre otros) como en sedimentos actuales (Ballesteros-Prada y Bernasconi, 2019; Bernasconi, 2020; Bernasconi et al., 2018; Bernasconi y Cusminsky, 2020).

Como ya se mencionó, *B. peruviana* es una especie ampliamente distribuida en la plataforma argentina, siendo registrada en sedimentos holocenos de áreas costeras, en plataforma interna, la zona batial y en ambientes marino-marginales, por ejemplo, lagunas, llanuras intermareales, ambientes fangosos intermareales y estuarios (por ejemplo: Bernasconi y Cusminsky, 2007, 2009, 2015; Calvo-Marcilese et al., 2011; Laprida, 1998; Laprida y Bertels-Psotka, 2003; Márquez et al., 2016). Por otro lado, especies del género *Elphidium* se registraron en sedimentos fangosos y arenosos de la plataforma interna, marismas y lagunas salobres e hipersalinas (Bernasconi y Cusminsky, 2007, 2015; Murray, 1991). En el caso de *C. poeyanum* fue encontrada en ambientes marinos-marginales del estuario de bahía Blanca (Calvo-Marcilese et al., 2011), así como en aguas

someras de la plataforma costera e interna de Argentina (Alperin et al., 2008). Otra especie, *C. gunteri,* es dominante en pantanos y lagunas (Murray, 2006). En particular, en América del Sur, se encontró en aguas salobres de la laguna Dos Patos, Brasil; Río Quequén, Argentina (Boltovskoy et al., 1980) y ambientes costeros de la laguna de Mar Chiquita, Argentina (Márquez, 2019). En cambio, *Elphidium advenum* var. *Depressulum,* fue mencionado en aguas mixohalinas del Río de la Plata, mientras que *E. galvestonense* se encontró ocasionalmente en aguas salobres (Boltovskoy et al., 1980).

Especímenes del género *Ammonian* habitan en sedimentos fangosos-arenosos, especialmente ambientes de baja salinidad como marimas y lagunas salobres (Murray, 2006), siendo común en sedimentos de marismas a submareales con lodo y carbono orgánico total (TOC) variables y salinidades de 50 psu hasta menos de 1 psu (Koehn-Zaninetti, 1982; Márquez, 2019).

El ensamble a lo largo del perfil PM2 se caracterizó especialmente por especies de los géneros Ammonia y Elphidium, junto con Buccella peruviana que se asocia principalmente con condiciones con menor influencia marina como en ambientes estuarinos y marismas (Ishman et al., 1996; Sen Gupta y Barun, 1999). En diversos trabajos realizados para el Holoceno en la zona litoral de la provincia de Buenos Aires se citan ensambles similares a las encontradas en este perfil, sin embargo, los nombres de las especies difieren entre los trabajos, lo cual dificulta la comparación entre los mismo. Se determinó una asociación similar dominada por B. peruviana, A. beccarii parkinsoniana, A. beccarii tepida y E. discoidaley en menor proporción Q. seminulina y D. williamsoni en sedimentos localizado sobre el Canal 15 determinando que correspondía a una barrera costera depositada en un ambiente salobre con una progradación costera dominada por las olas y otro mas al sur sobre la ruta 11, correspondiente al Holoceno que se habría depositado entre la parte superior de la ante playa y la playa distal, ambos pertenecientes al Mb. Cerro de la Gloria, Fm. Canal de las Escobas, con una edad aproximada de 4 800 +- 110 años cal. AP. (Laprida y Bertels-Psotka, 2003; Fucks et al., 2010). A su vez, Marquez et al. (2016) determinan para un perfil localizado cerca a Mar Chiquita una asociación compuesta principalmente por B. peruviana, A. parkinsoniana, A. tepida con edad aproximada entre 6 848 -6 171 años cal.AP. y 6 025-5 660 años cal. AP., al cual reconoció como un ambiente salobre con condiciones estuarinas con moderados niveles de energía, que hacia los 6 025 años cal. AP.se torna hacia un ambinete con condiciones más restringidas.

5.3.2.3 Evolución ambiental del perfil PM2

A partir del análisis micropaleontológico y los distintos índices, se pudieronidentificar cuatro etapas principales en la evolución del ambiente representado en el perfil PM2 de Bahía Samborombón durante el Holoceno medio (Fig.5.9).

El perfil PM2 se caracterizó por la presencia en todo su espesor de *B. peruviana*, *Cribroelphidium* spp. y *Ammonia* spp. Considerando que que asociaciones recientes similares fueron relacionadas con ambientes marino-marginales con menor influencia marina como estuarios y marismas (Ishman et al., 1996; Sen Gupta y Barun, 1999), se puede determinar que entre los 6 882 – 6 641 años cal. AP. y 5 596 – 5 434 años cal. AP. la zona estudiada se reconoció principalmente un ambiente marino marginal. Diferentes autores infieren que la base del Mb. Canal 18, al que pertenece este perfil (PM2), corresponde a un ambiente sedimentario de condiciones de planicie de marea en una zona de marisma (Fucks et al., 2010; Luengo et al., 2018; Richiano et al., 2012).

Sin embargo, las variaciones en la abundancia de las especies domintantes y la incorporación de otras especies en menor proporción indicarían variaciones en relación a los niveles de oxigenación y la energía de fondo.

En la primera etapa, depositada entre los *ca*. 6803 – 6286 años cal. AP. (PM2-Z1: 258–238 cm), habría predominado un ambiente salobre con condiciones de baja salinidad. La gran abundancia de *Ammonia* en relación con la proporción de *C. poeyanum* y *B. peruviana* sugirió un ambiente salobre con valores más bajos de salinidad. El análisis cuantitativo y el conjunto microfaunístico indicaron condiciones ambientales inestables que difieren de un ambiente sedimentario marino normal. Además, la presencia de formas infaunales biseriales y triseriales como *B. elegantissima*, *B. ordinaria* y *B. striatula* reflejó una baja concentración de oxígeno disuelto en el ambiente. Teodoro et al. (2010) reconocen a las especies *B. ordinaria*, *B. striatula* y *B. elegantissima* como especies asociadas a bajas concentraciones de oxígeno. Estas condiciones están en concordancia con los resultados obtenidos a partir de los índices *Ammonia/Elphidium*, BFOI y la relación epifaunal/infaunal.

Por otro lado, el sedimento juega un papel importante en la abundancia y la distribución de los foraminíferos, siendo el tamaño de grano uno de los factores determinantes más relevantes (Hayward et al., 2002; Murray, 2006).

Figura 5.9. Reconstrucción paleoambiental en base a los foraminíferos bentónicos presentes en el perfil PM2.

En este sentido, la presencia de estas especies infaunales podría estar relacionada con el sedimento fino. En efecto, Bernasconi y Cusminsky (2005, 2009) y Bernasconi et al. (2009) encontraron la preferencia por el sedimento fino de *B. elegantissima* y *Bolivina* spp. Por el contrario, las especies epifaunales como *B. peruviana* y *Q. seminula* serían menos capaces de vivir en sedimentos finos, prefiriendo en cambio sedimentos arenosos (Bernasconi y Cusminsky 2007, 2015; Bernasconi et al., 2018). Por lo tanto, esta zona corresponde a un ambiente salobre con la menor concentración de oxígeno (entre 0,3 y 1,5 mL/L) y baja energía de fondo.

En la segunda etapa posterior a los *ca*. 6803 – 6 286 y 6458 – 5884 años cal. AP. (PM2-Z2 de 233 a 83 cm), sugirió un aumento de las condiciones marinas hacia la consolidación de un ambiente marino somero. Al comienzo de esta etapa (PM2-Z2a) el aumento de la influencia marina podría estar relacionado con el flujo de agua de mar hacia el área de estudio, probablemente como resultado del evento transgresivoocurrido durante el Holoceno medio. En esta etapa, se detectó un incremento de *B. peruviana* y de especies epifaunales de los géneros *Elphidium, Cribroelphidium* y *Quinqueloculina*, sugiriendo mayores niveles de oxigenación, lo cual está respaldado por los datos de los índices que reflejan también un ligero aumento en la concentración de oxígeno disuelto

Página 111 | 194

cercano a 1,5 mL/L. Además, la presencia de *Quinqueloculina* spp., *Quinqueloculina milletti* y otros individuos, como *Rosalina. williamsoni*, estaría relacionada con ambientes de fondo altamente hidrodinámicos (Teodoro et al., 2010). La resistencia a la erosión de las conchillas de los miliolidos favorece su relativa abundancia en ambientes de alta energía (Usera y Blázquez-Morilla, 1997). Se mencionó que las formas epifaunales como los miliólidos están asociados a sedimentos recientes arenosos y a ambientes de alta energía (Alperín et al., 2011 y Bernasconi, 2020). Asimismo, los individuos de los géneros que se adhieren al sustrato, como *Quinqueloculina* spp. permanecen en los sitios a pesar del movimiento del agua o de las condiciones de estrés (Goldstein, 2002).

A los *ca*. 6458 – 5884 años cal. AP. (de 175 a 123 cm), el aumento en la abundancia de especies como *C. excavatum*, *E. advenum* var. *depresulum* y *C. gunteri*, y la disminución de *Quinqueloculina* spp., arefleja una disminución de la energía de fondo en el medio ambiente. A partir de *ca*. 5489 – 5117 años cal. AP., se observó un aumento en la abundancia de especies del género*Ammonia* y una disminución de *Buccella*, *Cribroelphidium* y *Elphidium*, y los individuos del género *Quinqueloculina* fueron muy bajos. En este contexto, a partir de los valores de los índices se reconoció una transición a condiciones salobres posiblemente de marisma.

El periodo *ca*. 5489 – 5117 años cal. AP. se caracterizó por una abundancia muy baja de individuos, con un alto porcentaje de conchillas con presencia de abrasión y retrabajo, debido probablemente a procesos de transporte de esta fauna alóctona. Un aumento gradual de *Ammonia* spp., una disminución en *C. gunteri* en particular, así como en los Miliolidos, reflejaron una disminución en la salinidad. También se registraron porcentajes crecientes de *B. elegantissima*, *Bolivina ordinaria* y *Bolivina striatula*. Este aumento de las formas infaunales podría reponder a la presencia de sedimentos fangosos que predominan en esta parte superior del perfil. Además, *Bolivina, Bulimina* y otras biseriadas están adaptadas a vivir en zonas con niveles mínimos de oxígeno (Bernasconi y Cusminsky, 2009; Bernhard et al., 1997; Hayward et al., 2002; Sen Gupta y Machain-Castillo, 1993; Smart, 2002 y Alperin et al. 2011). El aumento de estas especies infaunales junto con los datos obtenidos de los índices reflejaría condiciones eutróficas con menores niveles de oxigenación.

El perfil PS comprende un rango de edad entre 6261 – 5919 años cal. AP. y 1725 – 1511 años cal. AP.

La composición faunística del perfil PS se caracterizó por la presencia a lo largo de toda tod el perfil de especies de los géneros *Ammonia*, *Cribroelphidium* y *Elphidium*, esta asociación de especies se encuentra en ambientes con menor influencia marina como estuarios y marismas (Ishman et al., 1996; Sen Gupta, 1999).

La asociación de especies más representativas del PS corresponde a *C. poeyanum, C. gunteri, A. tepida, E. galvestonense, A. parkinsoniana* y especies del género *Quinqueloculina*, características de ambientes marino-marginales (lagunas, estuarios, bahías, marismas) a marinos someros. Estas especies son principalmente hialinas y porcelanáceas, no se observaron especies aglutinadas. Asociaciones similares a la mencionada fueron citada en ambientes holocenos (Calvo-Marcilese, 2011; Calvo-Marcilese et al., 2013; Laprida y Bertels-Psotka, 2003; Márquez, 2019; Márquez et al., 2016). La asusencia de *B. peruviana* y el predominio de *C. gunteri* indicarían condiciones diferentes a las propuestas por otros autores mencionaodos anteriormente. Márquez y Ferrero (2011) interpretan, a partir de la asociación faunística similar porvenente de una seccion de un perfil frchado a los 2507 +- 70 años, un ambiente estuarino, lagunar de baja energía, hipoalino.

5.3.3.1 Tafonomía e interpretación de índices

El análisis tafonómico indica que las conchillas obtenidas a lo largo del perfil presentan una buena preservación (Grupo Tafonómico A). Las conchillas desde la base hasta los 51 cm presentan un alto grado de preservación y un porcentaje bajo de conchillas fragmentadas (Grupo Tafonómico A y C). Estas características sugieren que la asociación de individuos es principalmente autóctona. A partir de los 51 cm hasta el tope se observó un aumento en el porcentaje de conchillas fragmentadas y retrabajadas (Grupos Tafonómicos C y D), lo cual indicaría que estas cohcilla tienen un origen diferente. La abundancia y diversidad de especies (S), presentaron valores relativamente bajos a lo largo del perfil. Tanto la abundancia como la diversidad de especies alcanzaron su valor máximo en el nivel de 86 cm con 26 especies y 373 individuos. Estos parámetros de abundancia y diversidad son comparables con los encontrados en el estuario de Bahía Blanca por Calvo-Marcilese et al. (2011) y para los ambientes costeros del Noreste de la provincia de Buenos Aires por Laprida y Bertels-Psotka (2003). A su vez, se relaciona la baja diversidad específica de foraminíferos con condiciones ambientales inestables como marismas, lagunas o estuarios, mientras que valores altos de diversidad indicarían condiciones marinas normales (Boltovskoy y Wright, 1976; Haynes, 1981; Murray, 1991, 2006).

En cuanto a la diversidad de Shannon-Wiener (H), los resultados sugerirían condiciones inestables a lo largo del perfil indicando el predominio de un ambiente sedimentario marinomarginal para la edad cronológica involucrada reflejando un ambiente de marisma o marinomarginal salobre.

En el caso del índice alfa de Fisher, se propuso como una herramienta para clasificar o determinar diferentes ambientes relacionados con la salinidad y la fisiografía (Wright, 1972). En la base del perfil se observaron los valores más altos para el alfa de Fisher (5 -5,8), posterior a este nivel no se alcanzaron valores superiores a 5, a excepción del nivel 106 cm, lo que en general indicaría un ambiente sedimentario hiposalino. Esta variación podría estar sugiriendo un cambio en las condiciones ambientales como por ejemplo variaciones de salinidad.

El bajo nivel de oxígeno en la superficie de los sedimentos frecuentemente se realciona con una alta productividad cuaisada por la oxidación de la materia organica (Corliss y Chen, 1988). A lo largo del perfil se observó un predominio de especímenes infaunales (~90%) lo cual indicaría condiciones de baja oxigenación. Por otro lado, los valores de BFOI a lo largo del perfil presentaron mayor variación desde la base hasta los 86 cm (–0.41 hasta 0.04), desde este nivel hasta el tope el valor es igual a 0. A rasgos generales, estos valores indicarían indicaría condiciones subóxicas entre 0,3 y 1,5 mL/L.

Para el PS los valores de *Ammonia/Elphidium* (IAE) los valores son bajos a lo largo de todo el perfil (<50), desde la base del perfil hasta el nivel de 76 cm los valores de IAE se mantiene bajos (10-26) con algunos picos que no superan el valor de 40. A partir de los 76 cm se observó un leve aumento de valores entre 24, hasta 77 a los 32 cm. Teniendo en cuenta que el porcentaje de organismos infaunales y el BFOI sugieren condiciones de baja oxigenación a lo largo de todo el perfil, es posible que el aumento en el IAE no se deba principalmente a variaciones en los valores de oxigenación, sino a la disminución de la salinidad. Este aumento gradual en la salinidad podría estar indicado por el aumento de *Elphidium* y la disminución en el número de individuos del género *Ammonia* (Brewster-Wingard et al., 1996) y esto haría que se disminuyan los valores del IAE (Karlsen et al., 2000). Esta interpretación concuerda con la aportada por Vilanova y Prieto (2012) en la cual plantean a partir de análisis palinológicos el desarrollo de vegetación halófita en un pantano salobre a partir de *ca*. 4300 años cal. AP. con la progresiva desaparición de las condiciones estuáricas en relación con el descenso del nivel del mar, el aislamiento de las marismas por la progradación de los cordones litorales y el desarrollo de pastizales en un ambiente con mayor influencia del aporte fluvial hacia 1725 – 1511 años cal.AP.

Estos últimos tres índices (AEI, BFOI, Infaunal) reflejaron condiciones de baja oxigenación (0,3–1,5 mL/L) entre 6261 – 5919 años cal. AP. y 1725 – 1511 años cal. AP. A partir de los 70 cm hacia el tope se observó una disminusion en la salinidad del sistema.

5.3.3.2 Ensamble de foraminíferos

La composición faunística del perfil PS se caracterizó por la presencia a lo largo de todo el perfil de especies de los géneros *Ammonia*, *Cribroelphidium* y *Elphidium*, esta asociación se encuentra en ambientes con menor influencia marina como estuarios y marismas (Ishman et al., 1996; Sen Gupta y Barun, 1999). Fue citada para sedimentos del Holoceno de la planicie costera de la provincia de Buenos Aires, en zonas ubicadas muy próximas al área de estudio (Laprida et al., 2007; Márquez, 2019; Márquez et al., 2016), incluyendo sedimentos de marismas de la Bahía Samborombón (Laprida, 1998; Laprida y Bertels-Psotka, 2003; Luengo et al., 2018); y en sedimentos salobres del estuario de Bahía Blanca (Calvo-Marcilese et al., 2011, 2013).

La asociación de especies más representativas del PS estuvo constituida por *C. poeyanum*, *C. gunteri*, *A. tepida*, *E. galvestonense*, *A. parkinsoniana* y especies del género *Quinqueloculina*, características de ambientes marino-marginales (Lagunas, estuarios, bahías, marismas) a marinos someros. Estas especies son principalmente hialinas y porcelanáceas, no se observaron especies aglutinadas. Esta situación también se observó en depósitos sedimentarios holocenos ubicados al Suroeste de la provincia de Buenos Aires, en el estuario de Bahía Blanca; así como en la zona central de Bahía Samborombón y en el PM2 (Calvo-Marcilese, 2011; Calvo-Marcilese et al., 2013; Laprida y Bertels-Psotka, 2003; Márquez, 2019; Márquez et al., 2016).

5.3.3.3 Evolución ambiental del Perfil PS

En base al análisis micropaleontológico y los respectivos índices, se identificaron 2 etapas principales en la evolución del ambiente entre los 6261-5919 años cal. AP. y los 1725 – 1511 años cal. AP., representada en el perfil PS de Bahía Samborombón (Fig.5.10). Las especies dominantes en este perfil sugieren un ambiente marino-marginal mientras que las variaciones en la abundancia de las especies del género *Elphidium* y *Ammonia* reflejan cambios en la salinidad para este periodo de tiempo.

La primera etapa, corresponde al rango temporal entre los 6261 – 5919 años cal. AP. y antes de los 4427 – 4056 años cal. AP. (PS2-Z1: 171-117 cm) se observó un predominio de *C. poeyanum, C. gunteri* y *E. galvestonense,* especies características de ambientes marino-marginales someros y salobres como lagunas costeras y estuarios (Boltovskoy et al., 1980, Murray, 2006). Además, la presencia de *A. tepida* y *A. parkinsoniana* en baja proporción siguieren un ambiente de baja salinidad y las espeies *Quinqueloculina millettiy Quinqueloculina seminulum* serían indicadoras de ambientes de alta energía hidrodinámica, óxicos y con baja cantidad de materia orgánica (Eichler et al., 2012a). Este rango temporal correspondería al final del máximo transgresivo y el comienzo de la fase regresiva. Análisis palinológicos realizados por Vilanova y Prieto, (2012), reconocieron una transición gradual desde una marisma baja a una alta, caracterizada por *S. densiflora* asociada con *Sarcocornia perennis*. Esta asociación de la vegetación constituye uno de los patrones encontrados en la marisma alta, relacionado con el predominio de aguas salobres, suelos salinos e influencia local de agua dulce.

Figura 5.10 Reconstrucción paleoambiental en base a los foraminíferos bentónicos presentes en el perfil PS.

La segunda etapa (PS - Z2 = 112-31 cm) corresponde al rango cronológico entre antes de los 4427 - 4056 años cal AP. y antes de los 3000 años cal AP. según dataciones realizadas por Vilanova y Prieto, (2012). En esta etapa se ve una disminución de *C. poeyanum, E. galvestonense* y el aumento en el porcentaje de A. tepida y A. parkinsoniana. Esto sugiere una disminución en los niveles de salinidad, cambiando de condiciones estuaricas a condiciones de marisma. La presencia de especies de C. excavatum apoyan la idea de un ambiente de marisma con menor influencia marina. Especies del género Haynesina, principalmente Haynesina germanica se encontró en ambientes de marismas sin vegetación o marisma baja. Esto esta en conconrdancia con el cambio en la vegetación hacia una vegetación halófita en un pantano salobre que se caracterizó por el dominio de Chenopodiaceaea sociada con Cyperaceae junto con Asteraceae y Ambrosia (Vilanova y Prieto, 2012). Este cambio se relaciona con la disminución de la influencia marina que se refleja en la desaparición de Operculodinium, Spiniferites y Heleobia australis. Durante este tiempo, el nivel del mar descendió y los cordones adosados a Punta Piedras continuaron creciendo hacia el sur quedando el ambiente restringido y protegido de la acción marina directa detrás de los cordones litorales (Violante et al., 2001); lo que habría ocasionado una disminución gradual de las condiciones estuáricas y un incremento de la influencia del Río Salado.

Finalmente, hacia el tope del perfil entre los *ca*. 3000 años cal. AP. y los 1725 – 1511 años cal. AP. la abundancia de foraminíferos disminuye drásticamente, predominan especies del género P á g i n a 117 | 194 *Ammonia* y disminuyen las especies del género *Cribroelphidium*. Por otra parte, el porcentaje de organismos retrabajados son más altos, lo que podría estar indicando un cambiohacia un ambiente de marisma media a alta. Vilanova y Prieto(2012) indican que el aumento de Poaceae, Cyperaceae, Asteraceae y *Ambrosia*, y la aparición de trazas de *Alternanthera* representan ambientes de pastizales y marisma cercana a la ribera del Río Salado. Los cuerpos de agua sobre depresiones inundables se evidencian por las mayores proporciones de remanentes de algas y por los restos de *Heleobia parchappii* y *Biomphalaria* que además se relacionan con vegetación acuática y sugieren una profundidad del cuerpo de agua entre 2 y 3 m (Prieto et al., 2004).

El análisis en conjunto de la información obtenida a partir de las asociaciones de foraminiferos de los perfiles PM2 y PS, sumado a la información previa, permitió obtener un escenario local de los eventos ocurridos en la zona media de la Bahía Samborombón a partir de los 6803–6286 años cal. AP. hasta los 1725 - 1511 años cal. AP. En la figura 5.10 se puede observar la relación vertical y horizontal de las distintas facies identificadas en las diferentes secuencias sedimentarias localizadas a lo largo del Canal 15 de la Bahía Samborombón.

5.3.4 Síntesis de la evolución paleoambiental en la zona central de bahía Samborombón durante el Holoceno.

A partir del análisis de la fauna de foraminíferos bentónicos y las dataciones radiocarbónicas obtenidas de los sedimentos, fue posible obtener el escenario ambiental de los eventos ocurridos en la zona central de la bahía Samborombón entre *ca*. 6803 – 6286 años cal. AP. y los 1725 -1511 años cal. AP., el cual confirma lo propuesto por investigaciones previas (Fucks et al., 2010; Richiano et al., 2012) realizados en base a otras disciplinas. En la figura 5.11 se muestra la relación vertical y horizontal de las facies identificadas a partir del ánalisis de foraminíferos bentónicos en las distintas secuencias sedimentarias estudiadas en este trabajo (PM2 y PS) y una ánalizada previamente por Luengo et. al. 2018 (PM1).

A aproximadamente 12 km hacia el interior de la costa, sobre el canal 15, entre *ca*. 6803 – 6286 años cal. AP., prevalecía un ambiente salobre de baja oxigenación, con alto flujo de materia orgánica y baja energía de fondo. Esto está en concordancia con registros polínicos que indican la

presencia de especies halófitas como, por ejemplo. *Chenopodiaceae* y *Limonium brasiliense* las cuales son comunes de ambientes de marisma salino (Luengo, 2020).

Posteriormente, entre los ca. 6458 – 5884 años cal. AP., se observó un aumento de las condiciones salinas, hacia un ambiente salobre con mayores niveles de oxígeno y mayor energía de fondo, lo cual estaría relacionado con el incremento del nivel del mar que habría llegado a los +/-3.5 msnm durante ese momento (Prieto et al., 2017).

Entre los *ca.* 5489 – 5117 años cal. AP. se observó un cambio hacia un ambiente salobre con contribución de fauna alóctona y mayor influencia de agua dulce, en respuesta al inicio del evento regresivo, que puede ser atribuido al efecto de la progradación costera (Prieto et al., 2017). Durante este periodo se inicia la conformación de barreras de arenas a 8 km de la costa actual, que corresponde al Mb. Cerro de la Gloria. Estas geoformas originaron un ambiente aislado de la influencia directa de la marea (Laprida y Bertels-Psotka, 2003; Fucks et al., 2010).

Este evento regresivo continúa generando los ambientes depositacionales característicos del Mb. Canal 15, Fm. Canal de Las Escobas (Luengo et al., 2018). A los 2700 años cal. AP, en la parte más costera a aproximadamente a 5,35 km hacia la zona continental, se coformó un ambiente intermareal a submareal como resultado del evento transgresivo (Luengo et al, 2018) pasando a un ambiente con cuerpos de agua aislados poco profundos a los 1900 AD (Luengo et al., 2018).

Paralelamente, a 34,43 km desde la línea de costa actual hasta el oeste, entre los *ca*. 6261 – 5919 años cal. AP. se registró un ambiente salobre somero, donde la ausencia de especies características de ambientes marinos como *B. peruviana* y *R. williamsoni* sugirieron un ambiente restringido y protegido de la influencia marina. Este ambiente podría ser el resultado de una intrusión salina en el canal del río Salado en el momento que aumenta el nivel del mar en su máximo transgresivo. Asimismo, la presencia de depósitos pleistocenos en la Fm. Puente de Pascua desarrollaron una barrera de aproximadamente 8 m, más o menos contínua, que más tarde habría obligado al río Salado a migrar hacia el norte para encontrar una nueva desembocadura (Fucks et al., 2010). De esta forma, la generación de dicha barrera habría impedido el avance uniforme del agua marina en la zona central de la bahía.

Entre los *ca*. 4427 – 4056 años cal. AP., la fase regresiva mengua el aporte de agua marina experimentando una disminución de la salinidad del ambiente, otorgando a esta zona características de un ambiente marino-marginal, del tipo marisma baja con condiciones hipohalinas.

Finalmente, antes de los 1725 – 1511 años cal. AP., si bien se observó que la abundancia de foraminíferos decrece, se pudo determinar el aumento de algunas especies tolerantes a ambientes de muy baja salinidad como por ejemplo *A. tepida*. Esto estaría reflejando una disminución considerable de la influencia marina y posiblemente un aumento en el aporte de agua dulce.

Considerando lo antes mencionado se determinó la presencia de diferentes ambientes deposicionales, que, aunque son el resultado de la ingresión marina ocurrida en el máximo transgresivo y su posterior evento regresivo, no reflejan una ingresión uniforme a lo largo de la zona de estudio. Es así que, si bien existe una correlación temporal, no hay una sinergia entre las biozonas de las suecesiones sedimentarias analizadas en este estudio (PM2 y PS) de manera que no se observó una continuidad en los eventos transgresivo – regresivo. Esto sugeriría que al momento del máximo transgresivo (6000 y 5500 años AP) la línea de la costa no se desplazó uniformemente 34,43 km hacia la zona continental.

Figura 5.11. Gráfico mostrando la relación vertical y horizontal de las facies identificadas en las distintas secuencias sedimentarias a partir de la fauna de foraminíferos. Se indica la localización de los perfiles en el mapa, 2 analizados en este trabajo (PM2, PS) y uno analizado por Luengo et. al., 2018(PM1). Amarillo: PM1, rojo: PM2 y azul: PS.

5.3.5 Síntesis regional de la evolución paleoambiental durante el Holoceno

Estudios paleoecológicos y paleambientales de diversos lugares a lo largo del margen costero de la provincia de Buenos Aires, sugieren cambios en el nivel del mar durante el Holoceno. Estas fluctuaciones se presentaron en diferente magnitud e intensidad de acuerdo con las características de cada cuenca de depositación: profundidad, distancia a la costa, geomorfología y descarga de agua a través de ríos y canales (Isla, 1986). Los trabajos realizados en base a foraminíferos bentónicos en la provincia de Buenos Aires, reflejan con buena precisión los cambios ambientales ocurridos durante el evento transgresivo – regresivo. Hacia el sur de la provincia, las difrentes suceciones analizadas previamente procedentes de Bahía Samborombón (Laprida et al., 2011; Laprida y Bertels-Psotka, 2003; Luengo et al., 2018) y las analizadas en este trabajo, indicarían que una mayor influencia marina se presentó después de los 6 803 – 6 286 años cal. AP., dando lugar a una posterior fase regresiva a partir de los 5 596 – 5 432 años cal AP. Esta fase habría generado diferentes ambientes depositacionales representados en los diferentes miembros de la Fm. Canal de Las Escobas. A su vez, se determinó que dicha influencia marina alcanzó al menos 34 km desde la línea de costa, que habría sido favorecida por la geomorfología de la zona e ingresando posiblemente por el cauce del río Salado. Esto dio lugar a un ambiente depositacional diferente a los que se localizan en áreas cercanas a la costa.

Hacia el centro, en la zona de la laguna de Mar Chiquita, se reconocieron condiciones marinas en diferentes momentos del Holoceno que se presentan alrededor de los 6 728 – 6 406 años cal. AP. (Márquez, 2019); entre 8 275 -7 125 años cal. AP. y antes del 3 985 – 3 761 años cal. AP. (Márquez y Ferrero, 2011) y finalmente, entre los 7 425-7 156 y 6 024 - 5 660 años cal.AP. (Márquez et al., 2016). Durante esta fase, se depositaron diferentes paleoambientes con condiciones de energía moderadas a altas. (Márquez, 2019).

Finalmente, hacia el sur de la provincia de Buenos Aires, en el estuario de Bahía Blanca, se mencionó la mayor influencia marina entre *ca*. 6 300 - 6 400 y 5 900 - 5 800 años cal. AP en Arroyo Napostá Grande (Calvo-Marcilese et al., 2013). También, se reconocieron oscilaciones negativas del Último Máximo Glacial en 6 400 años cal AP., 4 200 años cal AP. y 2900 años cal. AP. durante el hemiciclo transgresivo BP en un testigo (Cusminsky et al., 2009).

5.4 Conclusiones particulares del capítulo

A partir del análisis de los foraminíferos holocenos provenientes de succesiones sedimentarias localizadas en el sector central de Bahía Samborombón (35° 59' S) se pudieron obtener las siguientes conclusiones:

• Se determinó que los sedimentos correspondientes al perfil PM2 se depositaron durante el Holoceno medio y corresponden al Mb Canal 18 de la Fm. Canal de Las Escobas.

• El ensamble de foraminíferos bentónicos sugiere, en general, un ambiente marino marginal, que fue variando a lo largo del tiempo en respuesta a la influencia marina durante el máximo transgresivo del nivel del mar sobre la bahía. Estas variaciones se ven reflejadas principalmente en los cambios de abundancia de las especies principales y en la incorporación, en menor proporción, de las especies acompañantes.

• El análisis micropaleontológico de este intervalo, reflejó cambios paleoambientales entre *ca*. 6880 – 6640 y 5590 – 5430 años cal. AP. Durante la primera etapa *ca*. 6880 – 6640 años cal. AP. se reconoció un ambiente salobre con menor concentración de oxígeno y baja energía de fondo. Luego, hacia *ca*. 6500 – 6250 años AP., se detectó un ambiente con mayor influencia marina, mayores niveles de oxígeno y mayor energía de fondo. A partir de este análisis micropaleontológico se evidenció un evento de re-oxigenación derivado del flujo de agua de mar hacia el área, vinculado al nivel del mar alto durante el Holoceno medio. Finalmente, en *ca*. 6500 – 5430 años cal. AP se observó una transición gradual hacia condiciones de menor oxigenación y una menor energía en un ambiente más restringido hacia el establecimiento de condiciones salobres como el ambiente pantanoso.

• Los sedimentos correspondientes al perfil PS se depositaron durante el Holoceno medio – tardío.

• La asociación de foraminíferos bentónicos sugiere en general la presencia de un ambiente marino marginal restringido, el cual presenta variaciones en la salinidad, relacionadas con el evento transgresivo - Regresivo del Holoceno.

• El análisis micropaleontológico de este intervalo, reflejó cambios paleoambientales entre *ca*. 6880–6640 y 1725–1511 años cal. AP. Entre los 6261 – 5919 años cal. AP. se identificó un ambiente salobre somero con mayor influencia marina, el cual posiblemente esté relacionado con una

Página 122 | 194

intrusión marina en el cauce del río Salado. Antes de los 4427 - 4056 años cal. AP., se interpretó como un ambiente marino-marginal, intermareal o de marisma bajo, de menor salinidad, el cual se relaciona con una regresión marina y hasta llegar a un pantano salobre o de marisma alta, antes de los 1725 – 1511 años cal. AP.

CAPÍTULO 6. CONCLUSIONES Y CONSIDERACIONES FINALES

6.1 Conclusiones generales

Los aportes del estudio de los foraminíferos bentónicos actuales y holocenos de bahía Samborombón realizados en este trabajo, se mencionan a continuación:

- Se brinda nueva información acerca de la distribución de los foraminíferos actuales de la zona litoral y fósiles de la zona central de Bahía Samborombón y sus aspectos sistemáticos y tafonómicos. Se identificaron 105 especies de foraminíferos bentónicos, de las cuales 59 correspondieron a especies actuales. Además, si bien, en términos generales la diversidad y abundancia fue similar en ambos sets de muestras, se observaron cambios en la composición de las especies actuales con respecto a las fósiles dado que en los sedimentos actuales se presentaron ejemplares aglutinados, con sus implicancias ambientales.
- A partir del análisis de los foraminíferos bentónicos actuales en relación a las variables ambientales, se observó que las asociaciones de los foraminíferos evidenciaron cambios con respecto a los valores de conductividad, el tamaño de grano, el nitrógeno total y el carbono total. Se ratifica que a partir de este tipo de estudios se pueden detectar variaciones en los diferentes parámetros que afectan su distribución. Asimismo, a través de dichas asociaciones fue posible caracterizar diferentes sub-ambientes dentro de la zona de marisma de Bahía Samborombón, provincia de Buenos Aires.
- A partir del análisis de los dos perfiles estudiados en este trabajo se reconocieron cambios paleoambientales relacionados con el evento transgresivo - regresivo del Holoceno. Se observó que el efecto de esta fluctuación no fue uniforme a lo largo de la zona central de bahía Samborombón, sino que responde a las características geomorfológicas de la zona y al caudal del río Salado en ese momento.

• Por otro lado, a partir del análisis de las asociaciones fósiles se aportaron datos relevantes para ampliar el conocimiento de los cambios paleoambientales ocurridos durante el Holoceno. De forma tal, que se reconocieron fluctuaciones del nivel del mar relacionadas al evento transgresivo – regresivo ocurrido durante el Holoceno, *ca*. 6803 - 6641 años cal AP. En este sentido, se pudo determinar que el efecto de estas variaciones no habría sido uniforme a lo largo de la zona central de bahía Samborombón, sino que por el contrario respondieron a las características geomorfológicas e hidrodinámicas de la zona (como por ejemplo las variaciones del caudal del río Salado), en dicho momento. Este estudio representa una herramienta útil para determinar el efecto de las fluctuaciones del nivel del mar sobre ambientes costeros, complementando la información existente para la reconstrucción paleoambiental y paleoclimática de la zona.

6.2 Investigaciones a futuro

- Dado que la fauna actual de foraminíferos responde a las variaciones químicas del ambiente como el nitrógeno, el carbono, la materia orgánica, etc., pueden ser utilizadas en futuros estudios para detectar actividad antrópica a corta escala temporal y evaluación de la calidad ambiental de los ecosistemas.
- Intensificar los estudios tafonómicos permitirá evaluar o determinar los procesos físicosquímicos a los que fueron expuestos los foraminíferos, como por ejemplo en el caso de los ejemplares aglutinados, determinar si no estuvieron o fueron desintegrados por procesos particulares.
- La nueva información abre la posibilidad de desarrollar nuevas metodologías de análisis como la aplicación de funciones de transferencia para determinar, por ejemplo, variaciones en la salinidad o distancia a la costa, en virtud de estimar la magnitud e intensidad de las fluctuaciones del nivel del mar.
- Asimismo, incrementar el muestreo de sedimentos fósiles cercanos al área de estudio, contribuiría a mejorar y lograr una mayor resolución en las reconstrucciónes ambientales del Cuaternario.

Anexo I. Clasificación Sistemática

Reino CHROMISTA Cavalier-Smith 1981 Subreino HAROSA Cavalier-Smith 2010 Infrareino RHIZARIA Cavalier-Smith 2002 Phylum FORAMINIFERA d'Orbigny, 1826 Clase GLOBOTHALAMEA Pawlowski, Holzmann&Tyszka, 2013 Subclase TEXTULARIANA Mikhalevich, 1980 Orden LITUOLIDA Lankester, 1885 Suborden TROCHAMMININA Saidova, 1981 Superfamilia TROCHAMMINOIDEA Schwager, 1877 Familia TROCHAMMINIDAE Schwager, 1877 Subfamilia ARENOPARELLINAE Saidova, 1981 Género **ARENOPARELLI**NAE Saidova, 1951 Arenoparrella mexicana (Kornfeld, 1931)

> Subfamilia JADAMMININAE Saidova, 1981 Género **JADAMMINA** Bartenstein& Brand, 1938 *Jadammina polystoma* (Brady, 1870)

Subfamilia TROCHAMMININAE Schwager, 1877 Género**TROCHAMMINA** Parker & Jones, 1859 *Trochammina inflata* (Montagu, 1808) *Trochammina ochracea*(Williamson, 1858)

Orden TEXTULARIIDA Suborden TEXTULARIINA Delage & Hérouard, 1896 Superfamilia TEXTULARIOIDEA Ehrenberg, 1838

Página 127 | 194

Familia TEXTULARIIDAE Ehrenberg, 1838 Subfamilia TEXTULARIINAE Ehrenberg, 1838 Género **TEXTULARIA** Defrance, 1824 *Textularia* sp.1

Subclase ROTALIANA Mikhalevich, 1980 Orden ROTALIIDA Delage & Hérouard, 1896 Superfamilia PLANORBULINOIDEA Schwager, 1877 Familia CIBICIDIDAE Cushman, 1927 Subfamilia CIBICIDINAE Cushman, 1927 Género CIBICIDES Montfort, 1808 *Cibicides aknerianus* (d'Orbigny, 1846) *Cibicides fletcheri* Galloway & Wissler, 1927 *Cibicides* sp.1

Género CIBICIDOIDES Thalmann, 1939 Cibicidoides dispars (d'Orbigny, 1839) Cibicidoides mckannai (Galloway & Wissler, 1927)

Superfamilia BULIMINOIDEA Jones, 1875 Familia BULIMINELLIDAE Hofker, 1951 Género **BULIMINELLA** Cushman, 1911 **Buliminella elegantissima** (d'Orbigny, 1839)

Familia **BULIMINIDAE** Jones, 1875 Genero **BULIMINA**d'Orbigny, 1826 *Bulimina gibba* Fornasini, 1902 *Bulimina marginata* d'Orbigny, 1826 *Bulimina patagónica* d'Orbigny, 1839 Superfamilia DISCORBOIDEA Ehrenberg, 1838 Familia DISCORBIDAE Ehrenberg, 1838 Género **DISCORBIS** Lamarck, 1804 **Discorbis isabelleana** (d'Orbigny, 1839) **Discorbis peruvianus** (d'Orbigny, 1839) **Discorbis valvulata** (d'Orbigny, 1839) **Discorbis williamsoni** Chapman & Parr, 1932

Familia EPONIDIDAE Hofker, 1951 Subfamilia EPONIDINAE Hofker, 1951 Género **POROEPONIDES** Cushman, 1944 *Poroeponides lateralis* (Terquem, 1878)

Superfamilia DISCORBINELLOIDEA Sigal, 1952 Familia DISCORBINELLIDAE Sigal, 1952 Subfamilia DISCORBINELLINAE Sigal, 1952 Género **DISCORBINELLA** Cushman & Martin, 1935 **Discorbinella bertheloti** (d'Orbigny, 1839)

Superfamilia NONIONOIDEA Schultze, 1854 Familia ASTRONONIONIDAE Cushman & Edwards, 1937 Familia ASTRONONIONINAE Saidova, 1981 Género **ASTRONONION** Cushman & Edwards, 1937 *Astrononion* sp1.

Familia NONIONIDAE Schultze, 1854 Subfamilia NONIONINAE Schultze, 1854 Género **NONIONELLA** Cushman, 1926 **Nonionella chiliensis** Cushman & Kellett, 1929 Superfamilia ROTALIOIDEA Ehrenberg, 1839 Familia AMMONIIDAE Saidova, 1981 Subfamilia AMMONIINAE Saidova, 1981 Género **AMMONIA** Brünnich, 1771 **Ammonia parkinsoniana** (d'Orbigny, 1839) **Ammonia tepida** (Cushman, 1926) **Ammonia sp.1 Ammonia sp.2**

Familia NOTOROTALIIDAE Hornibrook, 1961 Género **BUCCELLA** Andersen, 1952 *Buccella peruviana* (d'Orbigny, 1839)

Familia ROTALIIDAE Ehrenberg, 1839 Subfamilia ROTALIINAE Ehrenberg, 1839 Género **ROTORBINELLA** Bandy, 1944

Familia HAYNESINIDAE Mikhalevich, 2013 Género **HAYNESINA** Banner & Culver, 1978 *Haynesina sp.* 1 *Haynesina germanica* (Ehrenberg, 1840) *Haynesina depressula* (Ehrenberg, 1840)

Familia ELPHIDIIDAE Galloway, 1933 Género **CRIBROELPHIDIUM** Cushman & Brönnimann, 1948 *Cribroelphidium excavatum (Terquem, 1875) Cribroelphidium gunteri (Cole, 1931) Cribroelphidium gunteri* (Cole, 1931) forma *tipica Cribroelphidium poeyanum* (d'Orbigny, 1839)
Género ELPHIDIUM Montfort, 1808 Elphidium advenum (Cushman, 1922) Elphidium articulatum (d'Orbigny, 1839) Elphidium advenum var. depressulum Cushman, 1933 Elphidium alvarezianum (d'Orbigny, 1839) Elphidium discoidale (d'Orbigny, 1839) Elphidium galvestonense Kornfeld, 1931 Elphidium macellum (Fichtel& Moll, 1798) Elphidium margaritaceum Cushman, 1930 Elphidium sp.1 Elphidium sp.2

Superfamilia CASSIDULINOIDEA d'Orbigny, 1839 Familia BOLIVINITIDAE Cushman, 1927 Subfamilia BOLIVINITINAE Cushman, 1927 Género BOLIVINA d'Orbigny, 1839 Bolivina compacta Sidebottom, 1905 Bolivina difformis (Williamson, 1858) Bolivina ordinaria Phleger& Parker, 1952 Bolivina plicata d'Orbigny, 1839 Bolivina pseudoplicata Heron-Allen &Earland, 1930 Bolivina striatula Cushman, 1922 Bolivina tortuosa (Brady, 1881) Bolivina translucens Phleger & Parker, 1951 Bolivina variabilis (Williamson, 1858) Bolivina sp.1 Bolivina sp.2

Página 131 | 194

Familia UVIGERINIDAE Haeckel, 1894 Subfamilia ANGULOGERININAE Galloway, 1933 Género **TRIFARINA** Cushman, 1923 **Trifarina angulosa** (Williamson, 1858)

Clase TUBOTHALAMEA Pawlowski, Holzman&Tyszka, 2013 Orden MILIOLIDA Delage &Hérouard, 1896 Familia MILIAMMINIDAE Saidova, 1981 Género**MILIAMMINA** Heron-Allen &Earland, 1930 **Miliammina fusca** (Brady, 1870)

> Subroden MILIOLINA Superfamilia MILIOLOIDEA Ehrenberg, 1839 Familia HAUERINIDAE Schwager, 1876 Subfamilia HAUERININAE Schwager, 1876 Género QUINQUELOCULINAd'Orbigny, 1826 Quinqueloculina lamarckianad'Orbigny, 1839 Quinqueloculina milletti (Linnaeus, 1758) Quinqueloculina seminulum (Linnaeus, 1758) Quinqueloculina seminulum (Linnaeus, 1758)

Subfamilia MILIOLINELLINAE Vella, 1957 Género **TRILOCULINA**d'Orbigny, 1826 *Triloculina trigonula* (Lamarck, 1804) *Triloculina baldai* Bermúdez & Seiglie, 1963 *Triloculina cultrata*

Página 132 | 194

Triloculina oblonga Triloculina sp1 Triloculina sp2 Triloculina sp3

Género **Pyrgoella** Cushman & White, 1936 **Pyrgoella irregularis** (d'Orbigny, 1839)

Clase NODOSARIATA Mikhalevich, 1992 emend. Rigaud et al., 2015 Subclase NODOSARIANA Mikhalevich, 1992 Orden NODOSARIIDA Calkins, 1926 Suborden NODOSARIINA Catkins, 1926 Superfamilia NODOSARIOIDEA Ehrenberg, 1838 Familia CHRYSALOGONIIDAE Mikhalevich, 1993 † Género LOTOSTOMOIDES Hayward &Kawagata, 2012 †

> Familia LAGENIDAE Reuss, 1862 Gènero **REUSSOOLINA** Colom, 1956 *Reussoo linalaevis* (Montagu, 1803)

Género LAGENA Walker & Jacob, 1798 Lagena aspera Reuss, 1862 Lagena leavis Lagena sp 1 Lagena sp5 Lagena spp

Orden POLYMORPHINIDA Mikhalevich, 1980 Suborden POLYMORPHININA Mikhalevich, 1980 Superfamilia POLYMORPHINOIDEA

Página 133 | 194

Familia ELLIPSOLAGENIDAE Silvestri, 1923 Subfamilia OOLININAE Loeblich & Tappan, 1961 Género **FAVULINA** Patterson & Richardson, 1988 *Favulina melo* (d'Orbigny, 1839)

Subfamilia ELLIPSOLAGENINAE Silvestri, 1923 Género **FISSURINA** Reuss, 1850 **Fissurina quadricostulata** (Reuss, 1870) **Fissurina laevis** Seguenza, 1862

Orden VAGINULINIDA Mikhalevich, 1993 Familia VAGINULINIDAE Reuss, 1860 Subfamilia LENTICULININAE Chapman, Parr & Collins, 1934 Género **LENTICULINA** Lamarck, 1804 *Lenticulina limbosa* (Reuss, 1863)

Familia VAGINULINIDAE Reuss, 1860 Subfamilia MARGINULININAE Wedekind, 1937 Género **AMPHICORYNA** Schlumberger in Milne-Edwards, 1881

Lámina A.

- 1. Arenoparrella mexicana (Kornfeld, 1931). Vista umbilical. MS01(15)
- 2. Arenoparrella mexicana (Kornfeld, 1931). Vista periférica. MS01(15)
- 3. Arenoparrella mexicana (Kornfeld, 1931). Vista lateral. MS01(15)
- 4. Jadammina polystoma (Brady, 1870). Vista umbilical. MS2(15)
- 5. Jadammina polystoma (Brady, 1870). Vista espiral. MS2(15)
- 6. Jadammina polystoma (Brady, 1870). Vista periférica. MS2(15)
- 7. Trochammina inflata (Montagu, 1808). Vista umbilical. MS03(14)
- 8. Trochammina inflata (Montagu, 1808). Vista espiral. MS03(14)
- 9. Trochammina inflata (Montagu, 1808). Vista lateral. MS03(14)
- 10. Trochammina inflata (Montagu, 1808). Vista umbilical. MS03(14)
- 11. Trochammina sp.1. Vista espiral. MS2(15)
- 12. Trochammina sp.1. Vista umbilical. MS2(15)
- 13. Trochammina ochracea (Williamson, 1858). Vista umbilical. MS4(14)
- 14. Trochammina ochracea (Williamson, 1858). Vista dorsal. C1502(18)
- 15. Textulariasp.1. PR(19)01

Lámina A. Foraminíferos Bentónicos Aglutinados

Lámina B

- 1. Cibicides aknerianus (d'Orbigny, 1846). Vista umbilical. MS01(15)
- 2. Cibicides aknerianus (d'Orbigny, 1846). Vista espiral MS01(15)
- 3. Cibicides sp.1. Vista umbilical. PM2-T11-44-43
- 4. Cibicides sp.1. Vista dorsal. PM2-T11-44-43
- 5. Cibicidoides mckannai (Galloway & Wissler, 1927). Vista espiral. PM2-T9-06-05
- 6. Cibicidoides mckannai (Galloway & Wissler, 1927). Vista espiral. PM2-T9-06-05
- 7. Cibicidoides dispars (d'Orbigny, 1839). Vista espiral. PM2-T11-44-43
- 8. Cibicidoides dispars (d'Orbigny, 1839). Vista umbilical. PM2-T11-44-43
- 9. Cibicidoides dispars (d'Orbigny, 1839). Vista umbilical. PM2-T11-44-43
- 10. Buliminella elegantissima (d'Orbigny, 1839). PM2-T11-44-43
- 11. Bulimina gibba Fornasini, 1902. PM2-T5-04-05
- 12. Bulimina marginata d'Orbigny, 1826. PM2-T5-04-05
- 13. Bulimina patagónica d'Orbigny, 1839. PM2-T4-21-22
- 14. Buccella peruviana (d'Orbigny, 1839). Vista dorsal. PR(19)04
- 15. Buccella peruviana (d'Orbigny, 1839). Vista umbilical. PM2-T4-21-22

Lámina B.

Foraminíferos Bentónicos Hialinos de los géneros (Cibicides-Cibicidoides-Buliminella-Bulimina-Buccella).

Página 138 | 194

Lámina C

- 1. Buccella peruviana (d'Orbigny, 1839). Vista umbilical. MS4(14)
- 2. Buccella peruviana (d'Orbigny, 1839). Vista espiral. MS4(14)
- 3. Discorbis peruvianus (d'Orbigny, 1839). Vista umbilical. PM2-T4-04-05
- 4. Rosalina williamsoni (Chapman & Parr, 1932).Vista espiral. PM2-T7-12-11
- 5. Rosalina williamsoni (Chapman & Parr, 1932). Vista umbilical. PM2-T7-12-11
- 6. Poroeponides lateralis (Terquem, 1878). Vista umbilical. PM2-T3-26-25
- 7. Discorbinella bertheloti (d'Orbigny, 1839). Vista espiral. PR (19) 02
- 8. Discorbinella bertheloti (d'Orbigny, 1839). Vista umbilical. PR (19) 02
- 9. Astrononion sp.1. Vista lateral. MS05(15)
- 10. Astrononion sp.1. Vista periférica. MS05(15)
- 11. Nonionella chiliensis Cushman & Kellett, 1929. PM2-T2-13-12
- 12. Nonionella chiliensis Cushman & Kellett, 1929. PM2-T2-13-12
- 13. Nonionella chiliensis Cushman & Kellett, 1929. PM2-T2-13-12
- 14. Ammonia parkinsoniana (d'Orbigny, 1839). Vista espiral PM2-T11-39-38
- 15. Ammonia parkinsoniana (d'Orbigny, 1839). Vista umbilical PM2-T11-39-38

Lámina C.

Foraminíferos Bentónicos Hialinos (*Buccella-Discorbis-Poroeponides-discorvinella-Astrononion-Nonionella-Ammonia*).

Lámina D

- 1. Ammonia tepida (Cushman, 1926). Vista umbilical. PS1-T1-01-03
- 2. Ammonia tepida (Cushman, 1926). Vista espiral. PM2-T11-39-38
- 3. Ammonia sp.1. Vista umbilical MS5(15)
- 4. Ammonia sp.1. Vista espiral PM2-T5-07-06
- 5. Rotorbinella magdalenensis (Lankford, 1973). PM2-T2-13-12
- 6. Haynesina sp.1. PM2-T1-08-07
- 7. Haynesina germanica (Ehrenberg, 1840). PS-T7-13-14
- 8. Haynesina depressula (Ehrenberg, 1840). PS-T7-08-07
- 9. Cribroelphidium poeyanum (d'Orbigny, 1826). PS-T2-05-07
- 10. Cribroelphidium poeyanum (d'Orbigny, 1826). PM2-T6-11-10
- 11. Cribroelphidium poeyanum (d'Orbigny, 1826). MS2(14)
- 12. Cribroelphidium excavatum (Terquem, 1875). C15(18)02
- 13. Cribroelphidium gunteri forma typicum. PR (19)04
- 14. Cribroelphidium gunteri (Cole, 1931). C1505(18)
- 15. Cribroelphidium gunteri (Cole, 1931). PR(19)03

Página 142 | 194

Lámina E

- 1. Elphidium advenum (Cushman, 1922). PM2-T5-12-11
- 2. Elphidium alvarezianum (d'Orbigny, 1839). PM2-T11-44-43
- 3. Elphidium discoidale (d'Orbigny, 1839). PR(19)5
- 4. Elphidium galvestonense Kornfeld, 1931. PM2-T4-21-22
- 5. Elphidium margaritaceum Cushman, 1930. PM2-T11-34-33
- 6. Bolivinap seudoplicata Heron-Allen y Earland, 1930. PM2-T1-08-07
- 7. Bolivina striatula Cushman, 1922. PM2-T4-04-05
- 8. Bolivina variabilis (Williamson, 1858). PM2-T-08-07
- 9. Bolivina sp.2
- 10. Miliammina fusca (Brady, 1870). C1502(18)
- **11.** *Quinqueloculina marckiana* d'Orbigny, 1839. PR(19)01
- 12. Quinqueloculina milletti (Wiesner, 1912). PM2-T9-01-00
- 13. Quinqueloculina patagonica (Linnaeus, 1758). PR(19)2
- 14. Quinqueloculina seminulum (Linnaeus, 1758). PR(19)4
- 15. Fissurina quadricostulata (Reuss, 1870). PM2-T4-10-09

Lámina E. Foraminiferos Bentóicos (*Elphidium-Bolivina-Miliammina-Quinqueloculina-Fissurina*).

Anexo II. Mapas

Anexo II.1. Temperatura (°C) para cada una de las muestras. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo II.2. Conductividad del agua (µsm) para cada una de las muestras. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo II. 3. pH del agua para cada una de las muestras. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo II. 4. Nitrógeno total en el sedimento (%NT) para cada una de las muestras. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15).

Anexo II. 5. Valores de fósforo total (µg/g d.w). A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15).

Anexo II. 6. Porcentaje de Materia Orgánica (%MO). A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15).

Anexo II. 7. Porcentaje de Carbono total (%CO). A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15).

Anexo II. 8. Abundancia (foraminíferos por un gramo de sedimento) en cada punto de muestreo. Los gráficos de tortas muestran el porcentaje de los tipos de conchilla. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo II. 9. Valor del índice alfa de Fisher en cada punto de muestreo. El gráfico de tortas muestra los géneros más representados en cada muestra. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR). Se graficó en un diagrama de torta el porcentaje que representa cada uno de los géneros en cada muestra, mostrándose en las etiquetas los 16 géneros con mayor abundancia.

Anexo II. 10. Valor del índice Shannon-Wiener en cada punto de muestreo. El gráfico de tortas muestra las especies más representativas en cada muestra. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo II. 11. Valor del índice *Ammonia-Elphidium* (IAE) en cada punto de muestreo. Los gráficos de tortas representan el tipo de hábitat epifaunal e infaunal. A. Ruta 36 (R36), B. Río Salado (RS), C. Canal 15 (C15), D. Punta Rasa (PR).

Anexo III. Correlación Spearman

Anexo III.1. Gráfico de correlación de Spearman con histogramas, funciones de densidad, líneas de regresión suavizadas y coeficientes de correlación con los niveles de significación (si no hay estrellas, la variable no es estadísticamente significativa, mientras que una, dos y tres estrellas significan que la correspondiente variable es estadísticamente significativa para los niveles 10 %, 5 % y 1 %, respectivamente). DIS: distancia a la costa; ELE: elevación, LOD: Lodos, ARE: Arena, COND: conductividad, pH: pH, TEM: Temperatura, PT: fósforo total, NT: nitrógeno total, CT: carbono total, MO: materia orgánica, CO: carbono orgánico.

Anexo III.2. Gráfico de correlación de Spearman con histogramas, funciones de densidad, líneas de regresión suavizadas y coeficientes de correlación con los niveles de significación (si no hay estrellas, la variable no es estadísticamente significativa, mientras que una, dos y tres estrellas significan que la correspondiente variable es estadísticamente significativa para los niveles 10%, 5% y 1%, respectivamente). DIS: distancia a la costa; ELE: elevación, LOD: Lodos, ARE: Arena, COND: conductividad, pH: pH, TEM: Temperatura, PT: fósforo total, NT: nitrógeno total, CT: carbono total, MO: materia orgánica, CO: carbono orgánico y grupos tafonómicos (A, B, C y D).

Anexo III.3. Gráfico de correlación de Spearman con histogramas, funciones de densidad, líneas de regresión suavizadas y coeficientes de correlación con los niveles de significación (si no hay estrellas, la variable no es estadísticamente significativa, mientras que una, dos y tres estrellas significan que la correspondiente variable es estadísticamente significativa para los niveles 10%, 5% y 1%, respectivamente). DI: distancia a la costa; EL: elevación, LOD: Lodos, ARE: Arena, CON: conductividad, pH: pH, TEM: Temperatura, PT: fósforo total, NT: nitrógeno total, CT: carbono total, MO: materia orgánica, IND: Indiviuos/g de sedimento, AG: aglutinado, PO: porcelanáceo, HI: hialino, EP: epifaunales, IN: infaunales, BFOI, S: Riqueza de especies, DOM: Dominancia, H: índice de Shannon, índice de Fisher, IAE, AMO: indivios amorfos, V: individuos vivos.

BIBLIOGRAFÍA

- Acosta Herrera N (2004) Monografías Compendio de foraminíferos de Colombia. Bogotá: Universidad Nacional de Colombia.
- Aguirre ML y Whatley RC (1995) Late Quaternary marginal marine deposits and palaeoenvironments from northeastern Buenos Aires Province, Argentina: A review. Quaternary Science Reviews 14(3): 223–254: doi:10.1016/0277-3791(95)00009-E.
- Alperin M, Cusminsky G y Bernasconi E (2011) Benthic foraminiferal morphogroups on the Argentine continental shelf. JournalofForaminiferalResearch 41(2): 155–166: doi:10.2113/gsjfr.41.2.155.
- Alperin M, Bernasconi E y Cusminsky G (2008) Asociaciones de foraminíferos bentónicos recientes de la Plataforma Continental Argentina (39°- 43° S y 58°- 65° O) analizadas con métodos estadísticos para datos composicionales. Ameghiniana 45(2): 443–461.
- Alve E y Bernhard J (1995) Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Marine Ecology Progress Series 116(1–3): 137–152: doi:DOI 10.3354/meps116137.
- Alve E y Murray J (1999) Marginal marine environments of the Skagerrak and Kattegat: A baseline study of living (stained) benthic foraminiferal ecology. Palaeogeography, Palaeoclimatology, Palaeoecology 146, 171–193. <u>https://doi.org/10.1016/S0031-0182(98)00131-X</u>.
- Allen JRL (2000)Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat. Sci. Rev. 19, 1155–1231.
- Allen JRL y Pye K (1997) Saltmarshes and remineralization of sedimentary organiz matter: affects of redox oscillations. Chem. Geol. 114, 331-345.
- APHA (eds.) 1995.Standard Methods for the Examination of Water and Wastewater.19th Ed. American Public Health Association, Washington, U.S.A. 1134 pp.
- Armstrong H y Brasier M (2005) Microfossils. Microfossils: Second Edition. Blackwell Publishing Ltd.: doi:10.1002/9781118685440.
- Armynot du Châtelet É, Bout-Roumazeilles V, Riboulleau A yTrentesaux A (2009) Sediment (grain size and clay mineralogy) and organic matter quality control on living benthic foraminifera. Revue de Micropaleontologie 52(1): 75–84: doi:10.1016/j.revmic.2008.10.002.
- Avnaim-Katav S, Roland Gehrels W, Brown LN, Fard E y MacDonald GM (2017) Distributions of salt-marsh

foraminifera along the coast of SW California, USA: Implications for sea-level reconstructions. Marine Micropaleontology. Elsevier B.V. 131: 25–43. Available at: http://dx.doi.org/10.1016/j.marmicro.2017.02.001: doi:10.1016/j.marmicro.2017.02.001.

- Carter, M. (Ed.). 1993. Soil Sampling and Methods of Analysis. Canadian Society of Soil Science.Lewis Pub., 823 pp.
- Golterman, H. L. (ed.) 2004. The Chemistry of Phosphate and Nitrogen Compounds in Sediments.Kluwer Academic Publichers, London, 251 pp.
- Murphy, J. y Riley, J. P. 1962.- A Modified Single Solution Method for the Determination of Phosphate in natural Waters. Analyt. Chim. Acta., 27: 31-35.
- Ballesteros-prada A yBernasconi E (2019) Study of marsh foraminifera from the coastal plain of buenos aires (Argentina) and its ecological implications. Zootaxa 4560(3): 522–540: doi:10.11646/zootaxa.4560.3.5.
- Belart P, Clemente I, Raposo D, Habib R, Volino E, Villar A, et al. (2018) Living and dead Foraminifera as bioindicators in Saquarema Lagoon System, Brazil. Latin American Journal of Aquatic Research 46(5): 1055–1072: doi:10.3856/vol46-issue5-fulltext-18.
- Belart P, Laut VM, Clemente I, Raposo D, MArtins V, Frontalini F, et al. (2017) Living benthic Foraminifera from the Saquarema lagoonal system (Rio de Janeiro, southeastern Brazil). The journal of biodiversity data 13(April): 1–8.
- Benito X, Trobajo R, Cearreta A y Ibáñez C (2016) Benthic foraminifera as indicators of habitat in a Mediterranean delta: implications for ecological and palaeoenvironmental studies. Estuarine, Coastal and Shelf Science. Elsevier Ltd 180: 97–113. Available at: http://dx.doi.org/10.1016/j.ecss.2016.06.001: doi:10.1016/j.ecss.2016.06.001.
- Bergin F, Kucuksezgin F, Uluturhan E, Barut IF, Meric E, Avsar N, et al. (2006) The response of benthic foraminifera and ostracoda to heavy metal pollution in Gulf of Izmir (Eastern Aegean Sea). Estuarine, Coastal and ShelfScience 66(3–4): 368–386: doi:10.1016/j.ecss.2005.09.013.
- Bernasconi E (2006) Los foraminíferos del Holoceno de testigos de la plataforma continental argentina. Universidad Nacional del Comahue.
- Bernasconi E (2020) Ecological study based on the distribution of recent foraminifers from southeast of buenos Aires Province, argentinean continental shelf. Zootaxa 4821(1): 135–147: doi:10.11646/zootaxa.4821.1.7.
- Bernasconi E yCusminsky G (2007) Foraminíferos bentónicos de un testigo del Holoceno de la cuenca del Colorado, Argentina. Ameghiniana 44(2): 271–278.
- Bernasconi E y Cusminsky G (2020) Calcareous microorganisms as indicators of oceanographic conditions in South West Atlantic Ocean. Journal of Marine Systems. Elsevier 208(May 2019): 103369. Available at:

https://doi.org/10.1016/j.jmarsys.2020.103369: doi:10.1016/j.jmarsys.2020.103369.

- Bernasconi E, Mansilla M yCusminsky G (2018) Recent benthic foraminifers from the South Atlantic shelf of Argentina. JournalofForaminiferalResearch 48(3): 210–222: doi:10.2113/gsjfr.48.3.210.
- Bernasconi E, Cusminsky, G y Gómez E (2009) Foraminíferosbentónicos del Holoeno del Golfo Nuevo, Argentina: inferenciaspaleoclimáticas.Revista Española de Micropaleontología, 41 (1-2): 21-34.
- Bernhard J (1986) Characteristic Assemblages and Morphologies of Benthic. Journal of Foraminiferal Research 16, 207–215.
- Bertels-Psotka A y Laprida C (1998a) Ostracoda (Arhropoda, Crustaceae) holocenos del miembro Canal 18, Formacion Las Escobas (Holoceno), Provincia de Buenos Aires, República Argentina. Revista Española de Micropaleontología 1: 129–139.
- Bertels-Psotka A y Laprida C (1998b) Ostracodos (Arhropoda, Crustaceae) del miembro Cerro de la Gloria, Formacion Las Escobas (Holoceno), Provincia de Buenos Aires, República Argentina. Revista Española de Micropaleontología 1: 103–129.
- Bertels-Psotka A and Laprida C (1998c) Ostracodos y paleoambientes Holocenos del nordeste de la provincia de Bueons Aires, Argentina. Ameghiniana 35(2): 151–162.
- Bértola G (1994) Geomofologia y sedimentologia de los ambientes mareales de bahía Samborombón, provincia de Buenos Aires. Tesis Doctoral.
- Bértola G, Cortizo L y Pastorino S (1998) Delimitación de ambientes costeros en la Bahía Samborombón mediante información satelital. V Jornadas Geológicas y Geofísicas Bonaerenses (Mar del Plata) 217–225.
- Bertola M yMorosi M (1997) Caracterización textural de depósitos de ambientes de marea de la Bahía Samborombón (Buenos Aires, Argentina). Revista de la Asociación Argentina de Sedimentología 4: 1.
- Bertoni M y Bertolotti MI (2004) Criterios para el manejo de áreas naturales protegidas del humedal de Bahía Samborombón. Comunicación presentada en VI Jornadas Nacionales de Investigación-Acción en Turismo. Ushuaia [ARG].
- Betancur M y Martínez I (2003) Foraminíferos bentónicos recientes en sedimentos de fondo de la cuenca de Panamá (Pacífico colombiano), como indicadores de productividad y oxigenación. Universidad EAFIT, Departamento de Geología, Medellín, Antioquia. Colombia 32–1(0122–9761): 93–123. Available at: http://www.scielo.org.co/pdf/mar/v32n1/v32n1a06.pdf.
- Boltovskoy E (1954a) Foraminíferos del Golfo San Jorge. Revista del Instituto Nacional de Investigación de las Ciencias Naturales-Museo Argentino de Ciencias Naturales Bernardino Rivadavi 3: 80–246.
- Boltovskoy E (1954b) Foraminíferos de la Bahía San Blas. Revista del Instituto Nacional de Investigación de las Ciencias Naturaes Museo Argentino de Ciencias Naturales Bernardino Rivadavia 4: 248–298.

Boltovskoy E (1965) Los Foraminíferos Recientes. Buenos Aires: EUDEBA.

- Boltovskoy E, Giussani G, Watanabe S y Wright R (1980) Atlas of benthic shelf foraminifera of the southwest Atlantic. W. Junk. Publishers.
- Bouchet VMP, Frontalini F, Francescangeli F, Sauriau PG, Geslin E, Martins MVA, et al. (2021) Indicative value of benthic foraminifera for biomonitoring: Assignment to ecological groups of sensitivity to total organic carbon of species from European intertidal areas and transitional waters. Marine Pollution Bulletin 164(December 2020): doi:10.1016/j.marpolbul.2021.112071.
- Brandt D (1989) Taphonomic Grades as a Classification for Fossiliferous Assemblages and Implications for Paleoecology. Palaios 4: 303–309.
- Brewster-Wingard G, Ishman S, Edwards, Willard D, (1996) A Preliminary Report on the Distribution of Modern Fauna and Flora at Selected Sites in North-central and North-eastern Florida Bay. Open-File Report USGS, pp. 96e732.
- Burone L and Pires-Vanin AM (2006) Foraminiferal assemblages in Ubatuba Bay, South Eastern Brazilian coast. Scientia Marina 70(2): 203–217.
- Buzas My Gibson T (1969) Species diversity: Benthonic Foraminifera in Western North Atlantic. Science 163(3862): 72–75. Available at: https://www.jstor.org/stable/1725201: doi:10.1126/science.163.3862.72.
- Buzas M y Hayek L (2005) On richness and evenness within and between communities. Paleobiology 31(2): 199–220: doi:10.1666/0094-8373(2005)031[0199:oraewa]2.0.co;2.
- Calvo-Marcilese L (2011) Sistemática y Paleoecología de los Foramnifera (Protista) del Holoceno del área del estuario de Bahía Blanca, Argentina. Universidad Nacional de La Plata.
- Calvo-Marcilese L, Cusminsky G y Gómez E (2011) Asociaciones de foraminíferos bentónicos en secciones holocenas del estuario de Bahía Blanca (Buenos Aires, Argentina): Caracterización paleoambiental. Ameghiniana 48(2): 210–225: doi:10.5710/AMGH.v48i2(323).
- Calvo-Marcilese L y Langer MR (2010) Breaching biogeographic barriers: The invasion of Haynesina germanica (Foraminifera, Protista) in the Bahía Blanca estuary, Argentina. Biological Invasions 12(9): 3299–3306: doi:10.1007/s10530-010-9723-x.
- Calvo-Marcilese L y Langer M (2012) Ontogenetic morphogenesis and biogeographic patterns: Resolving taxonomic incongruences within "species" of Buccella from South American coastal waters. Revista Brasileira de Paleontologia 15(1): 23–32: doi:10.4072/rbp.2012.1.02.
- Calvo-Marcilese L, Pérez Panera JP, Cusminsky G y Gómez EA (2013) Micropaleontological record of Holocene estuarine stages in the Bahía Blanca estuary, Argentina. Journal of South American Earth Sciences. Elsevier Ltd 45: 147–159. Available at: http://dx.doi.org/10.1016/j.jsames.2013.03.005:

doi:10.1016/j.jsames.2013.03.005.

- Calvo-Marcilese L y Pratolongo P (2009) Foraminíferos de marismas y llanuras de marea del estuario de Bahía Blanca, Argentina: distribución e implicaciones ambientales. Revista Española de Micropaleontología 41(3): 315–332.
- Camacho S, Maria D, Moura D, Connor S, Scott D yBoski T (2015) Taxonomy, ecology and biogeographical trends of dominant benthic foraminifera species from an Atlantic-Mediterranean estuary (the Guadiana, southeast Portugal). Paleontologia Electronica 18(April): 1–27. Available at: http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=28&SI_D=R1mBfDkmVfuBLUTCcQb&page=1&doc=7.
- Cappannini D (1949) Estudiogeoedafológico del curso inferior del Río Salado (prov. de Buenos Aires) y zonas adyacentes. Tesis doctoral, Facul-tad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (inédito), 89 p., La Plata.
- Carol E, García L yBorzi G (2015) Hydrogeochemistry and sustainability of freshwater lenses in the Samborombón Bay wetland, Argentina. Journal of South American Earth Sciences. Elsevier Ltd 60: 21–30. Available at: http://dx.doi.org/10.1016/j.jsames.2015.03.002: doi:10.1016/j.jsames.2015.03.002.
- Carol E, Kruse E yPousa J (2008) Environmental hydrogeology of the southern sector of the Samborombon Bay wetland, Argentina. Environmental Geology 54(1): 95–102: doi:10.1007/s00254-007-0796-5.
- Carol E, Mas-Pla J y Kruse E (2013) Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay, Argentina. Applied Geochemistry. Elsevier Ltd 34: 152–163. Available at: http://dx.doi.org/10.1016/j.apgeochem.2013.03.006: doi:10.1016/j.apgeochem.2013.03.006.
- Cavallotto J, Violante R y Parker G (2004) Sea-level fluctuations during the last 8600 years in the de la Plata river (Argentina). Quaternary International 114(1): 155–165: doi:10.1016/S1040-6182(03)00050-8.
- Celia Magno M, Bergamin L, Finoia MG, Pierfranceschi G, Venti F y Romano E (2012) Correlation between textural characteristics of marine sediments and benthic foraminifera in highly anthropogenicallyaltered coastal areas. Marine Geology. Elsevier B.V. 315–318: 143–161. Available at: http://dx.doi.org/10.1016/j.margeo.2012.04.002: doi:10.1016/j.margeo.2012.04.002.
- Clemente I, Da Silva F, Laut L, Frontalini F, Da Costa V, Da Conceição Rodrigues MA, et al. (2015) Biochemical composition and foraminiferal content of sediments for determining bottom sector environments in Guanabara Bay (Rio de Janeiro, Brazil). JournalofCoastalResearch 31(5): 1190–1204: doi:10.2112/JCOASTRES-D-14-00104.1.
- Codignotto J and Kokot (2005) El Cambio climático en el Río de la Plata. El Cambio climático en el Río de la Plata, 173–180. Available at: http://www.cima.fcen.uba.ar/~lcr/libros/Cambio_Climatico-Texto.pdf.

- Codignotto J and Aguirre M (1993) Coastal evolution, changes in sea level and molluscan fauna in northeastern Argentina during the Late Quaternary. Marine Geology 110(1–2): 163–175: doi:10.1016/0025-3227(93)90112-9.
- Colado U, Figini A, Fidalgo F and Fucks E. (1995) Los depósitos marinos del Cenozoico superior aflorantes en la zona comprendida entre Punta Indio y el río Samborombón, Provincia de Buenos Aires. 4as. Jornadas Geológicas y Geofísicas Bonaerenses, Juníin Argentina 1: 151–158.
- Corliss B (1985) Microhabitats of benthic foraminifera within deep-sea sediments. Nature 314(6): 435–438. Available at: http://adsabs.harvard.edu/cgi-bin/nphdata_query?bibcode=1985Natur.314..435C&link_type=ABSTRACT%5Cnpapers2://publication/doi/10.1 038/314435a0: doi:10.1038/314435a0.
- Corliss By Chen C (1988) ecological implications Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology 16(August): 716–719: doi:10.1130/0091-7613(1988)016<0716.
- Cornelius N y Gooday A (2004) "Live" (stained) deep-sea benthic foraminiferans in the western Weddell Sea: Trends in abundance, diversity and taxonomic composition along a depth transect. Deep-Sea Research Part II: Topical Studies in Oceanography 51(14–16): 1571–1602: doi:10.1016/j.dsr2.2004.06.024.
- Cortelezzi C (1993) Sobre la edad de los depósitos de conchillas que afloran en las proximidades de Puente de Pascua (Partido de Castelli, Prov. de Buenos Aires). 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos, 249–251.
- Culver SJ y Buzas, MA (1995) Theeffectsofanthropogenichabitatdisturbance, habitatdestruction, and global warmingonshallow marine benthicforaminifera.JournalofForaminiferalResearch 25(3): 204-211.
- Cusminsky G, Bernasconi E y Calvo-Marcilese L (2009) Holocene benthicforaminiferafrom Bahía Blanca estuary: A review and updateofsystematic and palaeoenvironmentalaspects. Holocene 19(8): 1221– 1231: doi:10.1177/0959683609345085.
- De Rijk S (1995) Salinity control on the distribution of salt marsh foraminifera (Great Marshes, Massachusetts). Journal of Foraminiferal Research 25(2): 156–166: doi:10.2113/gsjfr.25.2.156.
- De S y Gupta A (2010) Deep-sea faunal provinces and their inferred environments in the Indian Ocean based on distribution of Recent benthic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier B.V. 291(3–4): 429–442. Available at: http://dx.doi.org/10.1016/j.palaeo.2010.03.012: doi:10.1016/j.palaeo.2010.03.012.
- Debenay J, Eichler B, Duleba W, Bonetti C y Eichler-Coelho P (1998) Water stratification in coastal lagoons: Its influence on foraminiferal assemblages in two Brazilian lagoons. Marine Micropaleontology 35(1–2): 67–89: doi:10.1016/S0377-8398(98)00011-5.

- Debenay J, Geslin E, Eichler B, Duleba W, Sylvestre F y Eichler P (2001) Foraminiferal assemblages in a hypersaline lagoon, Araruama (R.J.) Brazil. Journal of Foraminiferal Research 31(2): 133–151: doi:10.2113/0310133.
- Dong, S., Lei, Y., Li, T., & Jian, Z. (2020). Response of benthic foraminifera to pH changes: Community structure and morphological transformation studies from a microcosm experiment. *Marine Micropaleontology*, 156 (April 2019), 101819. https://doi.org/10.1016/j.marmicro.2019.101819
- Edwards R y Horton B (2000) Reconstructing relative sea-level change using UK salt-marsh foraminifera. Marine Geology 169(1–2): 41–56. Available at: www.elsevier.nl/locate/margeo: doi:10.1016/S0025-3227(00)00078-5.
- Eichler P, Castelão G, Pimenta F, Eichler B, De Miranda L, Rodrigues A, et al. (2004) Foraminifera and thecamoebians as indicator of hydrodynamic process in a choked coastal lagoon, Laguna Estuarine System, SC, Brazil. Journal of Coastal Research 39(39): 1144–1148.
- Eichler P, Rodrigues A, Eichler B, Braga E y Campos E (2012a) Tracing latitudinal gradient, river discharge and water masses along the subtropical South American coast using benthic Foraminifera assemblages.
 Brazilian Journal of Biology 72(3 suppl): 723–759. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842012000400010&lng=en&tlng=en: doi:10.1590/S1519-69842012000400010.
- Eichler P, Barcellos R, Santos L, Vital H y Gomes MP (2017) Sediment characteristics and foraminiferal assemblages in the nearshore benthos at Ponta Negra, RN, Brazil. Journal of Foraminiferal Research 47(3): 258–267: doi:10.2113/gsjfr.47.3.258.
- Eichler P, Billups K, Vital H y De Moraes J (2014) Tracing thermohaline properties and productivity of shelfwater masses using the stable isotopic composition of benthic foraminifera. Journal of Foraminiferal Research 44(4): 352–364. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84918790989&partnerID=tZOtx3y1: doi:10.2113/gsjfr.44.4.352.
- Eichler P, Eichler B, De Miranda LyRodrigues A (2007) Modern foraminiferal facies in a subtropical estuarine channel, Bertioga, São Paulo, Brazil. Journal of Foraminiferal Research 37(3): 234–247: doi:10.2113/gsjfr.37.3.234.
- Eichler P, Eichler B, Gupta B Sen y Rodrigues A (2012b) Foraminifera as indicators of marine pollutant contamination on the inner continental shelf of southern Brazil. Marine Pollution Bulletin. Elsevier Ltd 64(1): 22–30. Available at: http://dx.doi.org/10.1016/j.marpolbul.2011.10.032: doi:10.1016/j.marpolbul.2011.10.032.

- Eichler P, Eichler B, Miranda L, Pereira E, Kfouri P, Pimenta F, et al. (2003) Benthic foraminiferal response to variations in temperature, salinity, dissolved oxygen and organic carbon, in the Guanabara Bay, Rio de Janeiro, Brazil. Anuário do Instituto de Geociências 26: 36–51: doi:10.11137/2003_0_36-51.
- Eichler P, Rodrigues A, Pereira E da R, Eichler B, Kahn A y Vital H (2015) Foraminifera as EnvironmentalConditionIndicators in Todos os Santos Bay (Bahia, Brazil). Open Journal of Ecology 05(07): 326–342: doi:10.4236/oje.2015.57027.
- Escobar E, López M, Soto L ySignoret M (1997) Densidad y biomasa de la meiofauna del talud continental superior en dos regiones del Golfo de México. Ciencias Marinas 23(4): 463–489: doi:10.7773/cm.v23i4.823.
- Fatela F and Taborda R (2002) Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology 45(2): 169–174: doi:10.1016/S0377-8398(02)00021-X.
- Fernández L. (2010) Foraminíferos (protozoa: foraminiferida) del estuario fernández I. P. (2010).
 Foraminíferos (protozoa: foraminiferida) del estuario del río contaco(40°33'S; 73°43'O), CHILE.
 BoletinDeBiodiversidad de Chile, 4, 18–62.DEL RÍO CONTACO (40°33'S; 73°43'O), C.
 BoletindeBiodiversidad de Chile 4: 18–62.
- Fernández L y Zapata J (2010) Distribución de foraminíferos bentónicos (Protozoa: Foraminiferida) en la ensenada Quillaipe (41°32′ S; 72°44′ O), Chile: Implicaciones para el estudio del nivel del mar. Revista Chilena de Historia Natural. Sociedad de Biología de Chile 83(4): 567–583. Available at: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-

078X2010000400010&lng=es&nrm=iso&tlng=es: doi:10.4067/S0716-078X2010000400010.

- Fernández C, Mortier C y Volpedo A. (2006) Influencia de las Actividades Agropecuarias en los Procesos de eutrofizaci´on en la Cuenca Baja del R´ıo Salado (Provincia de Bue- nos Aires, Argentina). En: Eutrophication in South America: causes, consequences and technologies for management and control. Jos´eGaliziaTundisi, Takako MatsumuraTundisi y Corina Sidagis Ga- Ili (eds.): 17-34. Instituto Nacional de Ecología de Sao Carlos.
- Fidalgo F, Colado U. y De Francesco. F. (1973) Sobre ingresiones marinas cuaternarias en los partidos de Castelli, Chascomús y Magdalena (Pcia. de Buenos Aires). 5° CongresoGeológicoArgentino (Córdoba) 3: 227–240.
- Fisher R, Corbet A y Williams C (1943) The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. The Journal of Animal Ecology 12(1): 42: doi:10.2307/1411.
- Fossatia M, Pedocchia F, Santoroa P, Martíneza C, Ezzattib P, Piedra-Cuevai I, et al. (2015) Dinámica de flujo, del campo salino y de los sedimentos finos en el Río de la Plata. Ribagua. Elsevier 1(1): 48–63. Available
at: http://dx.doi.org/10.1016/S2386-3781(15)30007-4: doi:10.1016/s2386-3781(15)30007-4.

- Francescangeli F, Milker Y, Bunzel D, Thomas H, Norbisrath M, Schönfeld J, et al. (2021) Recent benthic foraminiferal distribution in the Elbe Estuary (North Sea, Germany): A response to environmental stressors. Estuarine, Coastal and ShelfScience 251(December 2020): doi:10.1016/j.ecss.2021.107198.
- Fucks E, Schnack E y Aguirre M (2010) Nuevo ordenamiento estratigráfico de las secuencias marinas del sector continental de la Bahía Samborombón, provincia de Buenos Aires. Revista de la AsociacionGeologica Argentina 67(1): 27–39.
- Fundación Vida Silvestre Argentina (2013) Aportes para abordar la adaptación al cambio climático en la bahía samborombón. Boletín técnico de la Fundación Vida Silvestre Argentina. Available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Evaluación+de+la+vulnerabilidad+d el+sitio+RAMSAR+de+Bahía+Samborombón+(Argentina)#0.

Garcia C (1998) El principio de uniformidad. i.- orígenes. Enseñanza de las Ciencias de la Tierra, 63: 234–238.

- Garreaud R, Vuille M, Compagnucci R y Marengo J (2009) Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier B.V. 281(3–4): 180–195. Available at: http://dx.doi.org/10.1016/j.palaeo.2007.10.032: doi:10.1016/j.palaeo.2007.10.032.
- Gildeeva O, Akita L, Biehler J, Frenzel P yAlivernini M (2021) Recent brackish water Foraminifera and Ostracoda from two estuaries in Ghana, and their potential as (palaeo)environmental indicators. Estuarine, Coastal and Shelf Science. Elsevier Ltd 256(January): 107270. Available at: https://doi.org/10.1016/j.ecss.2021.107270: doi:10.1016/j.ecss.2021.107270.

Grimm E (1991) Tilia Software. Illinois State Museum and Collection Center, Springfield.

- Goldstein S, Watkins G y Kuhn R (1995) Microhabitats of salt marsh foraminifera: St. Catherines Island, Georgia, USA. Marine Micropaleontology 26(1–4): 17–29: doi:10.1016/0377-8398(95)00006-2.
- Gooday A (1986) Meiofaunal foraminiferans from the bathyal Porcupine Seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep Sea Research Part A, Oceanographic Research Papers 33(10): 1345–1376: doi:10.1016/0198-0149(86)90040-3.
- Grassé P (1982) Los invertebrados o el triunfo del instinto. P t. VI. La vida unicelular. En: La vida de los animales (3). Ed. Planeta, Barcelona.
- Guerrero R, Acha E, Framiñan M y Lasta CA (1997) Physicaloceanographyofthe Rio de la Plata Estuary, Argentina. Continental Shelf Research 17(7): 727–742: doi:10.1016/S0278-4343(96)00061-1.
- Hack L, Tremblay L, Wratten S, Lister A yKeesing V (2007) Benthic meiofauna community composition at polluted and non-polluted sites in New Zealand intertidal environments. Marine Pollution Bulletin 54(11): 1801–1812: doi:10.1016/j.marpolbul.2007.07.009.

Hammer Ø y Harper D T (2006) Paleontological Data Analysis. 1st edition: doi:10.1002/9780470750711.

- Hammer Ø, Harper D y Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9.
- Harguinteguy C, Noelia C y Pastor W (2012) Change in the meiofauna community structure of sandy beaches of the Nuevo Gulf (Chubut, Argentina). PapeisAvulsos de Zoologia 52(34): 411–422: doi:10.1590/S0031-10492012021400001.
- Harper D (1999) Numerical Palaeobiology. Computer-Based Modelling and Analysis of Fossils and their Distributions. Chichester (Ed). John Wiley & Sons., New York.
- Hayward B (2014) "Monospecific" and near-monospecific benthic foraminiferal faunas, New Zealand. Journal of Foraminiferal Research 44(3): 300–315: doi:10.2113/gsjfr.44.3.300.
- Hayward B y Grenfell H (1999) Tidal range of marsh foraminifera for determining former sea-level heights in New Zealand. New Zealand Journal of Geology and Geophysics 42(3): 395–413: doi:10.1080/00288306.1999.9514853.
- Hayward B, Wilson K, Morley M, Cochran U, Grenfell H, Sabaa A, et al. (2010) Microfossil record of the Holocene evolution of coastal wetlands in a tectonically active region of New Zealand. Holocene 20(3): 405–421: doi:10.1177/0959683609353431.
- Heaton T, Köhler P, Butzin M, Bard E, Reimer R, Austin W, et al. (2020) Marine20 The Marine Radiocarbon
 Age Calibration Curve (0-55,000 cal BP). Radiocarbon. Cambridge University Press 62(4): 779–820.
 Available at: https://www.cambridge.org/core/journals/radiocarbon/article/marine20the-marine-radiocarbon-age-calibration-curve-055000-cal-bp/B3013899914A3198D4B884B7B6E5CE66:
 doi:10.1017/RDC.2020.68.
- Hogg A, Heaton T, Hua Q, Palmer J, Turney C, Southon J, et al. (2020) SHCal20 Southern Hemisphere Calibration, 0-55,000 Years cal BP. Radiocarbon 62(4): 759–778: doi:10.1017/RDC.2020.59.
- Hohenegger J (2018) Foraminiferal growth and test development. Earth-Science Reviews. Elsevier B.V 185(2017): 140–162. Available at: https://doi.org/10.1016/j.earscirev.2018.06.001: doi:10.1016/j.earscirev.2018.06.001.
- Horton B y Murray J (2007) The roles of elevation and salinity as primary controls on living foraminiferal distributions: Cowpen Marsh, Tees Estuary, UK. Marine Micropaleontology 63(3–4): 169–186: doi:10.1016/j.marmicro.2006.11.006.
- Horton B y Edwards R (2005) The application of local and regional transfer functions to the reconstruction of Holocene sea levels, north Norfolk, England. Holocene 15(2): 216–228: doi:10.1191/0959683605h1787rp.
- Horton B, Edwards R y Lloyd J (1999) UK intertidal foraminiferal distributions: Implications for sea-level

studies. Marine Micropaleontology 36(4): 205–223: doi:10.1016/S0377-8398(99)00003-1.

- Isla F (1989) Holocene sea-level fluctuation in the southern hemisphere. QuaternaryScienceReviews 8(4): 359–368: doi:10.1016/0277-3791(89)90036-X.
- Isla F, Rutter N y Zarate M (2000) La transgresión belgranense en Buenos Aires. Una revisión a cien años de su definición. Revista Cuaternario y Ciencias Ambientales 4: 3–14.
- Ishman S, Brewster-Wingard G, Willard D et al. (1996) Preliminarypalaeontologicreportoncore T-24, Little Madeira Bay, Florida. Open-File Report USGS, 96–543.
- Jorissen F, de Stigter H yWidmark J (1995) A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology 26(1–4): 3–15: doi:10.1016/0377-8398(95)00047-X.
- Kaiho K (1994) Benthic foraminiefera dissolved-oxygen index and sissolved-oxygen levels in the modern ocean. Geology 22: 719–722: doi:10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2.
- Kaiho K (1999) Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Marine Micropaleontology 37(1): 67–76: doi:10.1016/S0377-8398(99)00008-0.
- Kaminski M (2012) Calibration of the benthic foraminiferal oxygen index in the Marmara Sea. Geological Quarterly 56(4): 73–80: doi:10.7306/gq.1061.
- Karlsen A, Cronin T, Ishman S. et al. (2000) Historical trends in Chesapeake Bay dissolved oxygen based on benthic foraminifera from sediment cores. Estuaries, 23: 488–508.
- Kawahata H, Fujita K, Iguchi A, Inoue M, Iwasaki S, Kuroyanagi A, et al. (2019) Perspective on the response of marine calcifiers to global warming and ocean acidification—Behavior of corals and foraminifera in a high CO2 world "hot house." Progress in Earth and Planetary Science. Progress in Earth and Planetary Science: doi:10.1186/s40645-018-0239-9.
- Kemp A, Vane C, Horton P y Culver, S.J. (2010) Stable carbon isotopes as potential sea-level indicators in salt marshes, North Carolina, USA. *Holocene* 20, 623– 636. <u>https://doi.org/10.1177/0959683609354302</u>
- Kemp A, Telford R, Horton B, Anisfeld S ySommerfield C (2013) Reconstructing Holocene sea level using saltmarsh foraminifera and transfer functions: Lessons from New Jersey, USA. Journal of Quaternary Science 28(6): 617–629: doi:10.1002/jqs.2657.
- Kitazato H (1994) Foraminiferal microhabitats in four marine environments around Japan. Marine Micropaleontology 24(1): 29–41: doi:10.1016/0377-8398(94)90009-4.
- Koehn-Zaninetti L (1982) Les Foraminifères des maraissalants de Salin-de-Giraud (Sud de la France): milieu de vie et transportdans le salin, comparaisonavec les micro-faunes marines. GéologieMéditerranéenne 9(4): 447–470: doi:10.3406/geolm.1982.1219.

- Koho, K., y Piña-Ochoa, E. (2012). Benthic Foraminifera: Inhabitants of Low-Oxygen Environments. In A. V
 Altenbach, J. M. Bernhard, & J. Seckbach (Eds.), Anoxia: Evidence for Eukaryote Survival and
 Paleontological Strategies (pp. 249–285). Springer Netherlands. https://doi.org/10.1007/978-94-007-1896-8_14.
- Laprida C (1997) Micropaleontología (Ostrácodos y foraminíferos) y paleoecología del Cuaternario Tardío del Noroeste de la Provincia de Buenos Aires, República Argentina. Tesis Doctoral, Universidad de Buenos Aires.
- Laprida C y Bertels-Psotka A (2003) Benthicforaminifers and paleoecologyofa Holocene shellyconcentration, Salado Basin, Argentina Foraminifères. Geobios 36(5): 559–572: doi:10.1016/S0016-6995(03)00061-5.
- Laprida C, Chandler D, Mercau J, López R yMarcomini S (2011) Modern foraminifera from coastal settings in northern Argentina: Implications for the paleoenvironmental interpretation of Mid Holocene littoral deposits. Revista Mexicana de CienciasGeologicas 28(1): 45–64.
- Laprida C, Chapori N, Violante R y Compagnucci R (2007) Mid-Holocene evolution and paleoenvironments of the shoreface-offshore transition, north-eastern Argentina: New evidence based on benthic microfauna. Marine Geology 240(1–4): 43–56: doi:10.1016/j.margeo.2007.02.001.
- Lasta C y Jaureguizar A (2006) Ordenamiento ecosistémico del litoral bonaerense. En: Islas F y Lasta CA (eds) Manual de manejo costero para la Provincia de Buenos Aires. EUDEM, 78–83. Available at: <u>https://books.google.com.ar/books?id=shDQ2uR8MkC&pg=PA71&lpg=PA71&dq=ORDENAMIENTO+EC</u> <u>OSISTÉMICO+DEL+LITORAL+BONAERENSE&source=bl&ots=CqChJd_iXj&sig=ACfU3U0ez5q_0FJHO3LZZ</u> <u>CuUZgEpQShwsQ&hl=es419&sa=X&ved=2ahUKEwi50Yzb1J_pAhVpGLkGHd0lCf0Q6AEwDnoECAoQAQ#</u> <u>v=one.</u>
- Lee J y Anderson OR (1991) Symbiosis in Foraminifera. In: Lee JJ and Anderson OR (eds) Biology of Foraminifera. London, 157–220.
- Leipnitz I, Ferreira F, Leão CJ, Armynot du Châtelet E yFrontalini F (2014) Foraminiferal and testate amoeba diversity, distribution and ecology in transitional environments of the Tramandaí Basin (Rio Grande do Sul, South Brazil). Marine Biodiversity 44(3): 415–434: doi:10.1007/s12526-014-0243-2.
- Li M, Lei Y, Li T yDong S (2020) Response of intertidal foraminiferal assemblages to salinity changes in a laboratory culture experiment. Journal of Foraminiferal Research 50(4): 319–329.
- Loeblich A y Tappan H (1988) Foraminiferal Genera and their Classification. New York: Van Nostrand Reinhold Company.
- Loeblich A y Tappan H (1992) Present status of foraminiferal classification, in Studies in Benthic Foraminifera. In: Takayanagi Y and Saito T (eds) Proceedings of the Fourth International Symposium on Benthic Foraminifera. Tokyo, Japan: Tokai University Press, 93–102.

- Lucas A, Guerrero R, Mianzán H, Acha E y Lasta C (2005) Coastal oceanographic regimes of the Northern Argentine Continental Shelf (34-43°S). Estuarine, Coastal and ShelfScience 65(3): 405–420: doi:10.1016/j.ecss.2005.06.015.
- Luengo M (2019) Vegetación y ambientes del Holoceno en el sector continental de la Bahía Samborombón, provincia de Buenos Aires: cambios del nivel del mar. Tesis Doctoral, Universidad Nacional de la Plata.
- Luengo M, Ballesteros-Prada A, Vilanova I, Bernasconi E y Fucks E (2021) Environmental changes related to the Holocene sea-level transgression and successive highstand (7–5.5 Kyr) at the NE coastal plain of Buenos Aires (Argentina). Quaternary International. Elsevier Ltd 602(September 2020): 4–14. Available at: https://doi.org/10.1016/j.quaint.2021.03.006: doi:10.1016/j.quaint.2021.03.006.
- Luengo M, Bernasconi E, Vilanova I y Fucks E (2018) Past environmental changes during the Late Holocene sea-level fall (last 2.7 Ka) at Bahía Samborombón, NE coastal plain (Argentina). Journal of South American Earth Sciences. Elsevier 85(May): 362–373. Available at: https://doi.org/10.1016/j.jsames.2018.05.012: doi:10.1016/j.jsames.2018.05.012.
- Magurran A (2004) Measuring Biological Diversity. Wiley.
- Marquez M (2016) Ecología y paleoecología de foraminíferos en ambientes litorales del sudeste de la provincia de Buenos Aires (partidos de Mar Chiquita y Gral. Pueyrredón), Tesis Doctoral, Argentina. Universidad Nacional de Mar del Plata.
- Márquez M (2019) Holocene foraminiferaofthesoutheastofthe Pampa coastalplain, Argentina. Journal of
 South American Earth Sciences. Elsevier 94(February): 102215. Available at: https://doi.org/10.1016/j.jsames.2019.102215: doi:10.1016/j.jsames.2019.102215.
- Márquez M, Ferrero L y Cusminsky GC (2016) Holocene palaeoenvironmental evolution of the Pampa coastal plain (Argentina) based on calcareous microfossils. Revista Brasileira de Paleontologia 19(1): 25–40: doi:10.4072/rbp.2016.1.03.
- Martins M, Pinto A, Frontalini F, da Fonseca M, Terroso D, Laut L, et al. (2016) Can benthic foraminifera be used as bio-indicators of pollution in areas with a wide range of physicochemical variability?. Estuarine, Coastal and Shelf Science 182: 211–225: doi:10.1016/ j.ecss.2016.10.011.
- Matera N, Lee J (1972) Environmental factors affecting the standing crop of foraminifera in sublittoral and psammolittoral communities of a Long Island salt marsh. Marine Biology 14, 89–103
- Milker Y, Schmiedl G y Betzler C (2011) Paleobathymetric history of the Western Mediterranean Sea shelf during the latest glacial period and the Holocene: Quantitative reconstructions based on foraminiferal transfer functions. Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier B.V. 307(1–4): 324– 338. Available at: http://dx.doi.org/10.1016/j.palaeo.2011.05.031: doi:10.1016/j.palaeo.2011.05.031.

Miretzky P (2001) Procesos geoquímicos en la cuenca baja del Río Salado, Provincia de Buenos Aires. Facultad

de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Moreno C(2001) Métodos para medir la biodiversidad. Zaragoza.

- Müller-Navarra K, Milker Y ySchmiedl G (2016) Natural and anthropogenic influence on the distribution of salt marsh foraminifera in the Bay of Tümlau, German North Sea. Journal of Foraminiferal Research 46(1): 61–74: doi:10.2113/gsjfr.46.1.61.
- Murray J (1991) Ecology and palaeoecology of benthic foraminifera. Ecology and Palaeoecology of Benthic Foraminifera. London: Longman Scientific and Technical, 1991. Available at: https://books.google.com.ar/books?id=fWyuBAAAQBAJ: doi:10.4324/9781315846101.
- Murray J (2006) Ecology and applications of benthic foraminifera. Ecology and Applications of Benthic Foraminifera. Cambridge University Press, 2008. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84929719744&partnerID=tZOtx3y1: doi:10.1017/CBO9780511535529.
- Murray J yAlve E (1999) Natural dissolution of modern shallow water benthic foraminifera: Taphonomic effects on the palaeoecological record. Palaeogeography, Palaeoclimatology, Palaeoecology 146(1–4): 195–209: doi:10.1016/S0031-0182(98)00132-1.
- Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et, al., 2022. Vegan: community ecology package. R packageversion 2.5-5
- Parker G (1990) Estratigrafía del Río de la Plata. Revista de la Asociación Geológica Argentina. Revista de la Asociación Geológica Argentina 45: 193–204.
- Peet R (1974) The Measurement of Species Diversity. Annual Review of Ecology and Systematics 5(1): 285– 307: doi:10.1146/annurev.es.05.110174.001441.
- Perea D, Cabrera F, Corona A, Daners G, Martínez S, Mesa S, et al. (2018) Fundamentos de palentologia. Manuales didácticos. Montevideo: Comisión Sectorial de Enseñanza. Available at: https://www.cse.udelar.edu.uy/wp-content/uploads/2018/10/Fundamentos-de-paleontología-Daniel-Perea-Final.pdf.
- Pettit L, Hart M, Medina-Sánchez A, Smart C, Rodolfo-Metalpa R, Hall-Spencer J, et al. (2013) Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico.
 Marine Pollution Bulletin 73(2): 452–462. Available at: http://dx.doi.org/10.1016/j.marpolbul.2013.02.011: doi:10.1016/j.marpolbul.2013.02.011.
- Platon E y Sen Gupta B Sen (2001) Benthic foraminiferal communities in oxygen-depleted environments of the Louisiana Continental Shelf. In: Rabalais NN and Turner R. (eds) Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Washington, DC: American Geophysical Union, 147–164.

Pregnolato L, Viana R, Passos C, Misailidis M y Duleba W (2018) Ammonia-Elphidium index as a proxy for

Página 172 | 194

marine pollution assessment, northeast brazil/ O uso do índice Ammonia-Elphidiumcomo proxy para aavaliação da poluiçãomarinha do nordestebrasileiro. Journal of Sedimentary Environments 3(3): 176–186: doi:10.12957/jse.2018.38001.

- Prieto A, Mourelle D, Peltier W, Drummond R, Vilanova I y Ricci L (2017) Relative sea-level changes during the Holocene in the Río de la Plata, Argentina and Uruguay: A review. Quaternary International. Elsevier Ltd 442: 35–49. Available at: http://dx.doi.org/10.1016/j.quaint.2016.02.044: doi:10.1016/j.quaint.2016.02.044.
- Proyecto FREPLATA (2011) Estudio de la dinámica hidrosedimentológica del río de la plata: Observación y modelación numérica de los sedimentos finos.
- Ramsar (1997) Argentina Names Bahía de Samborombón to the Ramsar List. Available at: https://www.ramsar.org/es/node/39075#comment-0.
- Raposo D, Clemente I, Figueiredo M, Vilar A, Lorini ML, Frontalini F, et al. (2018) Benthic foraminiferal and organic matter compounds as proxies of environmental quality in a tropical coastal lagoon: The Benthic foraminiferal and organic matter compounds as proxies of environmental quality in a tropical coastal lagoon: The Itaipu lagoon. Marine Pollution Bulletin. Elsevier 129(1): 114–125. Available at: https://doi.org/10.1016/j.marpolbul.2018.02.018: doi:10.1016/j.marpolbul.2018.02.018.
- Raposo D, Laut V, Clemente I, Martins V, Frontalini F, Silva F, et al. (2016) Recent benthic foraminifera from the Itaipu Lagoon, Rio de Janeiro (southeastern Brazil). CheckList 12(5): 1959: doi:10.15560/12.5.1959.
- Richiano S, Varela A, D'Elias L, Bilmes A y Aguirre M (2012) Evolución Paleoambiental De Cordones Litorales Holocenos Durante Una Caída Del Nivel Del Mar En La VoluciónPaleoambiental De Cordones Litorales. Latin American Journal Sedimentology and Basin Analysis 19(2): 105–124.
- Rodrigues A, Oliveira K y Eichler P (2020) Living benthic foraminiferal assemblages monitored monthly in a tide-dominated estuary, Bertioga Channel, Brazil. Journal of Sedimentary Environments. Springer International Publishing 5(1): 117–135. Available at: https://doi.org/10.1007/s43217-020-00007-6: doi:10.1007/s43217-020-00007-6.
- Ruiz Nieto M, Avilés A, Moreno S, Niell F y Palomo L (2008) Evolución de la calidad del sedimento en el estuario del río Palmones. Almoraima 37: 201–212.
- Saraswat R (2015) Non-Destructive Foraminiferal Paleoclimatic Proxies: A Brief Insight Non-Destructive Foraminiferal Paleoclimatic Proxies: A Brief Insight. (March): doi:10.16943/ptinsa/2015/v81i2/48094.
- Saraswat R, Kouthanker M, Kurtarkar S, Nigam R, Naqvi S y Linshy V (2015) Effect of salinity induced pH/alkalinity changes on benthic foraminifera: A laboratory culture experiment. Estuarine, Coastal and Shelf Science. Elsevier Ltd 153: 96–107. Available at: http://dx.doi.org/10.1016/j.ecss.2014.12.005: doi:10.1016/j.ecss.2014.12.005.

- Schenone N, Volpedo A yCirelli A (2008) Estado trófico y variación estacional de nutrientes en los ríos y canales del humedal mixo-halino de Bahía Samborombón (Argentina). Limnetica 27(1): 143–150.
- Schenone N, Volpedo AV yCirelli FA (2007) Trace metal contents in water and sediments in Samborombo in Bay wetland, Argentina. WetlandsEcolManage 15: 303–310: doi:10.1007/s11273-006-9030-6.
- Schinack E (2010) Determinación de la línea de ribera desde Bahía Samborombón hasta Necochea 1. Buenos Aires. Available at: http://biblioteca.cfi.org.ar/documento/determinacion-de-la-linea-de-ribera-desdebahia-samborombon-y-necochea-provincia-de-buenos-aires/.
- Schnack E yPirazzoli P (1990) Quaternary sea-level changes. "Palaeogeography, Palaeoclimatology, Palaeoecology." Elsevier Science Publishers B.V. 82(1–2): 65–68. Available at: http://dx.doi.org/10.1016/S0031-0182(12)80019-8: doi:10.1016/S0031-0182(12)80019-8.
- Scott D, Medioli F and Schafer C (2001) Monitoring in Coastal Environments Using Foraminifera and Thecamoebian Indicators. Monitoring in Coastal Environments Using Foraminifera and Thecamoebian Indicators: doi:10.1017/cbo9780511546020.
- Semarnat(2002) Norma NOM-021-RECNAT-2000. Diario Oficial de la Federación. Available at: http://dof.gob.mx/nota_detalle.php?codigo=717582&fecha=31/12/2002.
- Sen Gupta B. y Platon E (2006) Tracking Past Sedimentary Records of Oxygen Depletion in Coastal Waters: Use of the Ammonia-Elphidium Foraminiferal Index. Journal of Coastal Research 3(39): 1351–1355.
- Sen Gupta B (1999) Systematics of modern Foraminifera. In: Sen Gupta B (ed) Modern Foraminifera. Dordrech: Kluwer Academic Publishers, 3–7.
- Sen Gupta B y Barun K (1999) Foraminifera in marginal marine environments. In: Sen Gupta B (ed) Modern Foraminifera. Dordrech: Kluwer Academic Publishers, 1512
- Sen Gupta B, Turner E y Rabalais N (1996) Seasonal oxygen depletion in continental-shelf waters of Louisiana:
 Historical record of benthic foraminifers. Geology 24(3): 227–230: doi:10.1130/0091-7613(1996)024<0227:SODICS>2.3.CO;2.
- Sousa L.R, Nakamura A, Yoshida H, Yamaguchi, Y, Kawasaki M, Satoh, H. (1997). Evaluation of the deformability of rock masses for dam foundations. Analysis of deformability investigation results of heterogeneous bedrock. Technical Memorandum of PWRI, no. 3514, Tsukuba City, 45p.
- Smart C (2002) Environmental Applications of Deep-Sea Benthic Foraminifera. In: Haslett (ed) Quaternary Environmental Micropaleontology, 14–58.
- Smith D, Harrison S, Firth CR y Jordan JT (2011) The early Holocene sea level rise. Quaternary Science Reviews.
 Elsevier Ltd 30(15–16): 1846–1860. Available at: http://dx.doi.org/10.1016/j.quascirev.2011.04.019:
 doi:10.1016/j.quascirev.2011.04.019.
- Smith K (1992) Benthic boundary layer communities and carbon cycling at abyssal depths in the central North

Pacific. Limnology and Oceanography 37(5): 1034–1056: doi:10.4319/lo.1992.37.5.1034.

- Snider L, Burnett B yHessler R (1984) The composition and distribution of meiofauna and nanobiota in a central North Pacific deep-sea area. Deep Sea Research Part A, Oceanographic Research Papers 31(10): 1225–1249: doi:10.1016/0198-0149(84)90059-1.
- Southall K, Gehrels W y Hayward BW (2006) Foraminifera in a New Zealand salt marsh and their suitability as sea-level indicators. Marine Micropaleontology 60(2): 167–179. Available at: www.elsevier.com/locate/marmicro: doi:10.1016/j.marmicro.2006.04.005.
- Strachan K, Finch J, Hill T, Barnett R, Morris C yFrenzel P (2016) Environmental controls on the distribution of salt-marsh foraminifera from the southern coastline of South Africa. Journal of Biogeography. John Wiley & Sons, Ltd 43(5): 887–898. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.12698: doi:10.1111/jbi.12698.
- Strachan K, Hill T, Finch J y Barnett R (2015) Vertical zonation of foraminifera assemblages in Galpins salt marsh, South Africa. Journal of Foraminiferal Research. GeoScienceWorld 45(1): 29–41. Available at: http://pubs.geoscienceworld.org/cushmanfoundation/jfr/article-pdf/45/1/29/3028088/29.pdf: doi:10.2113/gsjfr.45.1.29.

Stuiver M, Reimer P y Reimer W (2022) CALIB 8.2 [WWW program] at http://calib.org, accessed 2022-04-28

- R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Teodoro A, Duleba W, Gubitoso S, Prada S, Lamparelli C y Bevilacqua J (2010) Analysis of foraminifera assemblages and sediment geochemical properties to characterise the environment near Araçá and Saco da Capela domestic sewage submarine outfalls of São Sebastião Channel, São Paulo State, Brazil. Marine Pollution Bulletin. Elsevier Ltd 60(4): 536–553. Available at: http://dx.doi.org/10.1016/j.marpolbul.2009.11.011: doi:10.1016/j.marpolbul.2009.11.011.
- Travis J y Bowser S (1988) Optical approaches to the study of foraminiferan motility. Cell motility and the cytoskeleton 10(1–2): 126–136: doi:10.1002/cm.970100117.
- Travis J y Bowser S (1991) The motility of foraminifera. In: Lee JJ and Anderson OR (eds) Biology of Foraminifera. London: Academic Press, 91–155.

Tricart J (1973) Geomorfología de la Pampa deprimida (Buenos Aires). INTA, Colección Científica 12, 202.

- Van Der Zwaan G, Duijnstee I, Den Dulk M, Ernst S, Jannink N y Kouwenhoven T (1999) Benthic foraminifers: Proxies or problems? A review of paleocological concepts. Earth Science Reviews 46(1–4): 213–236: doi:10.1016/S0012-8252(99)00011-2.
- Van Hengstum P, Reinhardt E, Beddows P, Huang R y Gabriel J (2008) The Camoebians (testate amoebae) and foraminifera from three anchialine cenotes in Mexico: Low salinity (1.5-4.5 psu) faubal transitions.

Página 175 | 194

JournalofForaminiferalResearch 38(4): 305–317: doi:10.2113/gsjfr.38.4.305.

- Vilanova I y Prieto A (2012) Historia de la vegetación de las llanuras costeras de la Bahía Samborombón (~35,5°s), argentina, desde 7800 14 c años. Amenghiniana 49(3): 303–318.
- Vilanova I, Prieto A y Stutz S (2006) Historia de la vegetación en relación con la evolución geomorfológica de las llanuras costeras del este de la provincia de Buenos Aires durante el Holoceno. Ameghiniana 43(1): 147–159.
- Vilela C, Batista D, Baptista-Neto J, Crapez M y McAllister J (2004) Benthicforaminiferadistribution in highpollutedsedimentsfrom Niterói Harbor (Guanabara Bay), Rio de Janeiro, Brazil. Anais da Academia Brasileira de Ciencias 76(1): 161–171. doi:10.1590/S0001-37652004000100014.
- Violante R y Parker G (2000) El Holoceno en las regiones marinas y costeras del nordeste de Buenos Aires. Revista de la Asociación Geológica Argentina 55: 337–351.
- Violante R y Parker G (2004a) The post-last glacial maximum transgression in the de la Plata River and adjacent inner continental shelf, Argentina. Quaternary International 114: 167–181: doi:10.1016/S1040-6182(03)00036-3.
- Violante R, Parker G yCavallotto J (2001) Evolución de las llanuras costeras del este bonaerense entre la bahía Samborombón y la laguna Mar Chiquita durante el Holoceno. Revista de la AsociacionGeologica Argentina 56(1): 51–66.
- Volpedo A, Yunes T y Cirelli A (2005) El humedal mixohalino de Bahía Samborombón: conservación y perspectivas. Humedales Fluviales de América del Sur. Hacia un manejo sustentable., 89–106. Available Wetzel RG (2001) Limnology. San Diego.
- Wilson B, Orchard K y Phillip J (2012) SHE analysis for biozone identification among foraminiferal sediment assemblages on reefs and in associated sediment around st. kitts, eastern caribbean sea, and its environmental significance. Marine Micropaleontology. Elsevier B.V. 82–83: 38–45. doi:10.1016/j.marmicro.2011.10.001.
- Zedler JB, Callaway JC, Desmond JS, Vivian-Smith G, Williams GD, Sullivan, G. y Bradshaw, BK (1999) Californian salt-marsh vegetation: an improved model of spatial pattern. Ecosystems, 2 (1): 19-35.

Financiamiento e Instituciones que contribuyeron a la realización de esta Tesis de Doctorado

- Proyecto PICT 2014-1271. Estudiosistemático de Foraminíferos, nanofósiles, ostrácodos y carofitas del Mesozoico y Cenozoico de Argentina: implicanciasbioestratigráficas, paleobiogeográficas y paleoambientales. Finalizado.
- Proyecto PIP 112201201-00021. EstudioSistemático, Bioestratigráfico, Paleoecológico y paleobiogeográfico de microfósiles (Foraminíferos, nanofósiles, ostrácodos y carofitas) del Mesozoico y Cenozoico de Argentina. Finalizado.
- FONCYT, Agencia Nacional de PromociónCientífica y Tecnológica.
- INIBIOMA CONICET, Instituto de InvestigacionesenBiodiversidad y Medioambiente Consejo Nacional de InvestigacionesCientíficas y Técnicas.
- CRUB-UNCOMA, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue. Bariloche

Trabajos publicados con referato en revistas especializadas durante la realización del doctorado

Publicaciones relacionadas con el tema de tesis

- 2022. Ballesteros-Prada., The mistery of the shells in the river bank. Past Global Changes Magazine and Past Global Changes Horizons, vol 2 (Enprensa).
- 2021. Luengo, M., Ballesteros-Prada, A., Vilanova, I., Fucks, E., y Bernasconi, E. Environmental changes related to the Holocene sea-level transgression and successive highstand (7–5.5 Kyr) at the NE coastal plain of Buenos Aires (Argentina). Quaternary International. https://doi.org/10.1016/j.quaint.2021.03.006
- 2020.Ballesteros-Prada, A., Luengo, M., Vilanova, I., Fucks, E., &Bernasconi, E. Foraminiferal paleodiversity and paleoenvironments at the NE coastal plain of Buenos Aires province (Argentina) during the Mid-Holocene Sea level highstand. Holocene. https://doi.org/10.1177/0959683620961511
- •2019. Ballesteros-Prada, A., Bernasconi, E. "Study of marsh foraminifera from the coastal plain of Buenos Aires (Argentina) and its ecological implications". Zootaxa 4560(3): 522–540: doi:10.11646/zootaxa.4560.3.5. 2017.

Capítulo de libro

•2019. Ballesteros-Prada, A. "Modern Benthic Foraminifera "Phylum Foraminifera (D'Orbigny 1826)" of the Panama Bight: A Census Report Based on Thanatocoenoses from the Continental Slope". Advances in South American Micropaleontology. Available at: http://link.springer.com/10.1007/978-3-030-02119-1: doi:10.1007/978-3-030-02119-1.

Presentación a congresos nacionales e internacionales

- 2020. Ballesteros-Prada, A., El Presente, pasado y futuro de los océanos contado desde los foraminíferos.
 Conferencista dentro del conversatorio "Retos oceanográficos del 2021 LV Congreso Nacional y VI Internacional Virtual de Ciencias Biológicas.
- 2019. Luengo, M. Ballesteros-Prada, A., Vilanova, I., Bernasconi, E., Fucks, E. "Análisis multi-Proxy del evento transgresivo durante el Holoceno medio en el sector litoral de Bahía Samborombón" Reunión de Comunicaciones de la Asociación Paleontológica Argentina. La Plata.
- 2019. Ballesteros-Prada, A., Bernasconi, E. "Foraminíferos Bentónicos actuales provenientes de la Bahía Samborombón, Argentina" [Currentbentonicforamsfrom Samborombón Bay, Argentina].
 COLACMAR2019. Mar del Plata. Argentina.
- 2018. Ballesteros-Prada, A., Luengo, M., Bernasconi, E., Vilanova, I. "Análisis micropaleontológico del miembro Canal 18 (Formación las Escobas), Bahía Samborombón, Argentina" [Micropaleontologicalanalysisof Canal 18 Member (Las Escobas Formation), Samborombón Bay, Argentina]. Comunicaciones de la Asociación Paleontológica Argentina.
- 2018. Ballesteros-Prada, A.; Ballesteros-Prada, J. M, Pagliaro, M. A. "Didacticstrategiesforteachingthe use ofmicrofossiltochildren and adults". FORAMS; Edimburgo.
- 2018. Ballesteros-Prada, A., Bernasconi, E. "Paleoenvironmentalinferencesfrom a late quaternary marine sequence in Samborombón bay, Buenos Aires (South America)". FORAMS; Edimburgo.
- 2017. Ballesteros-Prada, A., Bernasconi, E. "Estudio preliminar de la distribución de los foraminíferos recientes de Canal 15, Bahía Samborombón (Argentina)" [Preliminary study of the distribution of recent forams of Canal 15, Samborombón Bay (Argentina)]. COLACMAR 2017, Balneário Camboriú.
- 2017. Ballesteros Prada A., Patarroyo Camargo G. D, RinconMartinez D., Martinez I., "Foraminiferals assemblages and enviromental inferences of the southeastern Panama Basin (Pacific Margin Colombia -Ecuador)", COLACMAR 2017, Balneário Camboriú.
- 2016. Ballesteros-Prada, A., RinconMartinez, D. "Estudio preliminar de los foraminíferos (Holoceno Tardío) del margen continental del departamento de Choco- Pacifico colombiano" [Preliminarystudyofforams (Late Holocene) fromthe continental marginof Choco-Pacífico colombianlocation]. Reunión de Comunicaciones de la Asociación Paleontológica Argentina., General Roca.

Cursos de posgrado y perfeccionamiento durante el doctorado

- 2019. Comunicación en ciencia: consejos para presentar tesis, charlas y pósters. Centro Regional Universitario Bariloche (Crub); Universidad Nacional Del Comahue-Argentina
- 2019. Taller de redacción científica. Centro Regional Universitario Bariloche (Crub); Universidad Nacional Del Comahue-Argentina
- 2018. Large Benthic foraminifera. The International School on Foraminifera Urbino. GRZYBOWSKI FUNDATION – Urbino Italia
- 2018. Planctonic foraminifera. The International School on Foraminifera Urbino. GRZYBOWSKI FUNDATION
 Urbino Italia
- 2018 Small Benthic Foraminifera. The International School on Foraminifera Urbino. GRZYBOWSKI FUNDATION – Urbino Italia
- 2018 Introduction to the foraminifera. The International School on Foraminifera Urbino. GRZYBOWSKI FUNDATION – Urbino Italia
- 2018. Microfósiles calcáreos (foraminíferos y ostrácodos): su utilización en aspectos bioestratigráficos, paleoecológicos, paleoclimáticos y paleoambientales. Centro Regional Universitario Bariloche (Crub); Universidad Nacional Del Comahue-Argentina
- 2017.Geología costera y marina. Universidad Nacional De La Plata (UNLP) Argentina
- 2017. Ecología de frentes marinos. Universidad Nacional De La Patagonia "San Juan Bosco" (UNP) -Argentina
- 2017. Introducción al paquete estadístico R. Centro Regional Universitario Bariloche (Crub); Universidad Nacional Del Comahue-Argentina.
- 2017. Técnicas estadísticas para el análisis de datos multivariados aplicados en ecología y en paleoecología. Centro Regional Universitario Bariloche (Crub); Universidad Nacional Del Comahue-Argentina.
- 2017. Diseño experimental y desarrollo de proyectos en ecología. Centro Regional Universitario Bariloche (Crub); Universidad Nacional Del Comahue-Argentina.
- 2016. Clima, variabilidad climática y cambio climático. Facultad De Cs.Exactas y Naturales; Universidad Nacional d.e Mar del Plata.
- 2016. Biodiversidad: Conceptos y métodos para la priorización espacial de áreas con alta diversidad desde un enfoque multidimensional. Centro Regional Universitario Bariloche (Crub); Universidad Nacional Del Comahue-Argentina.

Cursos de extención durante el periodo del doctorado

- 2020. Seminario: Política, organización y desarrollo del sistema universitario argentino (P0703). Universidad Nacional de Río Negro Argentina.
- 2020. Seminario: Uso de las Tecnologías informacionales y multimediales en la enseñanza universitaria (P0705). Universidad Nacional de Río Negro – Argentina.
- 2020. Seminario: Didáctica Orientada a la Educación Universitaria (P0701). Universidad Nacional de Río Negro – Argentina.
- 2019. Metodologías para el diseño y la producción museología. Dirección Nacional de Museos- Argentina.
- 2019. Un museo común. Museos y comunidades. Dirección Nacional de Museos- Argentina.
- 2019. Pedagogía humana. Servicio Nacional de Aprendizaje | SENA-Colombia.
- 2018. Preparación y limpieza de materiales fósiles. Fabricación de moldes. Asociación Paleontológica Bariloche – Argentina.
- 2018. Identidad y gestión de las áreas educativas de museos. 2da edición. Dirección nacional de museos-Argentina.
- 2017. Preparación y limpieza de materiales fósiles. Asociación Paleontológica Bariloche.
- 2016. Aplicación de herramientas metodológicas en investigación: procesos de Ciencia y tecnología.
 Servicio Nacional de Aprendizaje | SENA- Colombia.

Copyright © 2019 Magnolia Press

https://doi.org/10.11646/zootaxa.4560.3.5

http://zoobank.org/urn:lsid:zoobank.org:pub:06CC3C1C-7916-4CDB-B9A3-E099DD579790

Study of marsh foraminifera from the coastal plain of Buenos Aires (Argentina) and its ecological implications

ANGÉLICA BALLESTEROS PRADA^{1.2} & EMILIANA BERNASCONI¹

11NIBIOMA-CONICET, Instituto De Investigaciones en Biodiversidad y Medioambiente. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad Nacional del Comahue, Quintral 1250, 8400 San Carlos de Bariloche, Argentina. Tel. +54 0294-4442676. E-mail: amballesterosprada@comahue-conicet.gob.ar, emibernasconi@yahoo.com.ar ²Corresponding author. E-mail: amballesterosprada@comahue-conicet.gob.ar

Abstract

The objective of this work was determinate the diversity and abundance of benthic foraminifers from recent sediments of Channel 15, Samborombón Bay ($35^{\circ}57'-35^{\circ}58'S$ and $57^{\circ}25'-57^{\circ}22'W$). From this analysis, we identified 31 species grouped within 17 genera. The assemblages were composed mainly of hyaline and agglutinated forms characterized by *Elphidium* aff. *poeyanum*, *Elphidium* gunteri, *Ammonia* parkinsoniana, *Arenoparella* mexicana and *Trochammina* inflata, reflecting an environment of marsh or floodplain. The foraminifer's tests were generally well preserved, with morphologies that indicate predominantly epifauna and epifauna-infauna. The present work shows that despite having a general fauna characteristic of these environments, there are small microenvironments that are characterized by the state of preservation, diversity and abundance of the found specimens. In that context, three associations were recognized; A, dominated by *Astrononion* sp.1 that was registered in the central part of the channel; association B, characterized by a considerable increase of mentioned agglutinated species (close to 50%) registered in the center of the channel. This study represents one of the first contributions on the distribution of foraminifera and their ecological characteristics from recent sediments in Samborombón Bay.

Key words: Recent benthic foraminifers, Taphonomy, Samborombón Bay

Introduction

In the littoral coastal plain of the province of Buenos Aires (Argentina) there are RAMSAR wetlands, mainly saltmarshes fed by the tributary rivers, the Río de la Plata estuary and the Atlantic Ocean. This creates specific ecological conditions that bestow aquatic and terrestrial ecosystems with high biodiversity. This combined with its geomorphological evolution, which was closely linked to the climatic variations related to the fluctuations of sea level during the Holocene, enhances the value of this area for paleo studies, both environmental and climate (Violante & Parker 2004). The Río de la Plata and Bahía Samborombón estuarine conditions have prevailed since the early and mid-Holocene, subjected to strong salinity variations due to the influence of local, regional and global factors, and the interaction of the processes involved. This inherent spatial and temporal variability at different scales involves almost all physical, chemical and/or ecological variables.

In this context, the littoral zone Samborombón Bay constitutes a buffer between land and aquatic ecosystems, thereby allowing the Pampa grasslands to be sheltered from marine influence. Currently, the region is at risk of inundation and erosion processes due to human impact, warming climate and sea-level changes. Some works that have been carried out in the study area contributed to the paleoenvironmental reconstruction of the bay (Cavallotto *et al.* 2004; Fuck *et al.* 2010; Vilanova & Prieto 2012; Prieto *et al.* 2017). Although, there are studies about the foraminifera from Holocene (Laprida *et al.* 2007; Bernasconi & Cusminsky 2007, 2015; Cusminsky *et al.* 2009; Calvo-Marcilese *et al.* 2013; Márquez & Ferrero 2011; Márquez *et al.* 2016) and from modern sediments

(Cusminsky *et al.* 2006; Alperin *et al.* 2011; Bernasconi 2017; Bernasconi *et al.* 2018) near the area of study, there are still not enough studies in the area of Bahía Samborombón. The information available is provided by Laprida (1997, 1999), which characterized the marine paleoenvironments established in the northeast of the province of Buenos Aires during the Late Quaternary. Laprida and Bertels (2003) determined a restricted environment based on the taxonomic and taphonomic analysis of the holocene foraminifera of channel 15, and Laprida *et al.* (2011) made the environmental comparison based on the analysis of the Holocene associations of Samborombón Bay and the modern ones of Mar de Ajó. Recently, our group analyzed the Holocene foraminifers (Bernasconi 2018, Ballesteros & Bernasconi 2018 and Luengo *et al.* 2018) and the modern foraminifers (Ballesteros & Bernasconi 2017) of the lower sector of Channel 15 and its environmental implications.

Taking into account all of the above, here we present the study of the distribution and abundance of benthic foraminifera of the mouth of Channel 15. The aim of this work is to provide new information about the diversity of recent foraminifera and its ecological implications in a transitional environment such as Samborombón Bay.

Moreover, the knowledge of modern foraminifer's assemblages will be useful as modern analogs in paleoecological and paleoenvironmental reconstructions, especially those related to the sea level fluctuations of Samborombón Bay during the Holocene.

Study area

The province of Buenos Aires has over 1300 km of a diverse coastline, including the low flood plain of the Río de la Plata Estuary and varied wetlands surrounding Samborombón Bay, Bahía Blanca Estuary and Anegada Bay. In particular, the Samborombón Bay is located in the northeastern coastal plain of Argentina, adjoining to the outer part of the Rio de la Plata estuary (Fig. 1). It is considered one of the most extensive Mixohaline wetlands in Argentina (244,000 ha) (Canziani, et al., 2013) and it was selected as a Ramsar Site in 1997 encompassing protected areas of different categories, jurisdictions and administration, such as the RAMSAR Bahía Site (Violante & Cavallotto, 2004). It is a wide open bay towards the East of Buenos Aires Province, with a coastline of \sim 180 km length from Punta Piedras (35°27'S-56°45'O) to the north and Punta Rasa (36°22'S-56°25'O) to the south. The bay extends inland to ~ 30 km and includes a portion of shallow water up to the isobaths of -3.5 m.s.n.m (Volpedo et al., 2005). Different sectors can be distinguished including waters with and without sediments, tidal flats, marshes and pampas plains (Bértola et al., 1998). This includes a zone of brackish water, where the waters of the Rio de la Plata and the Atlantic Ocean get mixed creating unique ecological conditions that are the sustenance of a great biodiversity. In addition, three main rivers cross the bay Salado, Samborombón and Ajó, and numerous artificial canals, shallow lakes, and variable depressions are interconnected by tributary streams. Channel 15 is specifically in the central zone of Samborombon Bay. The channel runs 7 km from the bridge of route 11 to the margin of the bay. This is an artificial system created in the 1930s, as a palliative to channel and evacuate surplus water from the lower basin of the Salado River; therefore, it transports fresh water from the continental zone to the coastal strip of the Mixohaline wetland (Volpedo et al. 2005).

In this area, the amplitude of the tidal range is small being microtidal (0.46/0.52) (Servicio de Hidrografía Naval, 1993). The coastal plain has negligible slope (0.01 %) and an average elevation of 1.6 m above mean sea level (Carol *et al.*, 2008). The tidal range (approximately 1.8 m by tables of the Naval Hydrography Service, 2018) and its low slope, generate the conditions for a low energy dynamics of the wind and waves with sediments, changing their distribution (Guerrero *et al.*, 1997). When the tide rises, due to that little topographic gradient, hundreds of meters are covered with a thin layer of water that supports the life of detritivore organisms and halophilous vegetation. Schenone *et al.* (2007, 2008) suggest that the concentrations of metals and nutrients respond to a latitudinal gradient in both high and low waters. However, rainfall recharge, continental water inputs, evaporation and long residence times define the hydrochemical and isotopical features of groundwater (Carol *et al.*, 2013). The horizontal gradient of marine water salinity distribution goes from 5 psu in Punta Piedras to 20–25 psu in Punta Rasa (Guerrero *et al.* 1997). For instance, rivers and canals that cross the bay are considered hypertrophic systems. Surface drainage is often an important contribution of phosphorus (P) to bodies of water that depend on the P present in the soil, topography, vegetation cover, length of flow intensity, land use and pollution (Wetzel 2001). Therefore, from the coast towards inland, several sectors can be recognized, such as water with and without sediments, tidal plains, saltmarshes and the Pampa plains (Bértola *et al.* 1998).

From the climate point of view, the study area presents a seasonal, moderately warm to temperate mesothermal environment, rainy and humid with maritime influence decreasing from the east to the west and south-west. (Bértola & Morosi 1997). The average environmental temperature varies between 22.8 and 9 °C (Information based on Normal Climatological Statistics—period 1981–2010, National Meteorological Service, 2018). The annual average temperature and precipitation are 16° C and 950 mm, respectively. The high amount of precipitation that occurs during the summer is related to the influence of the South American Monsoon System (SAMS) and the South Atlantic semipermanent high-pressure cell (Garreaud *et al.* 2009). It has a characteristic wind system that influences the circulation of the waves, concentrating the energy of the waves towards the northern sector of the south (Salado and Samborombón rivers and Punta Piedras). The most representative winds are those from N, NE, E and SE (Servicio Meteorológico Nacional, 1986); in particular, those from SE generate precipitation events called "sudestada", which significantly affect the region by pushing waters toward inland. At decadal and multidecadal scales, El Niño episodes are typically associated with anomalously wet conditions in the southeastern South America; also, precipitation variability have been connected to atmospheric-ocean coupled oscillations over the Atlantic and the Pacific oceans (Garreaud *et al.*, 2009).

FIGURE 1. Map showing location of the study area, Sambormbón Bay and Channel 15 (Modified from Fundación Vida Silvestre Argentina, 2013) and localization map of the sediment samples analyzed in this study.

Materials and methods

Eleven samples of recent sediments distributed along two transects perpendicular to coastline of Samborombón

Bay were collected in two summer campaigns during 2014 and 2015. Sampling extended -6 km throughout canal 15 (Fig. 1). Distance to the coast and altitude values were obtained through the digital elevation model supplied by the program Google Earth (DEM SRTM30). The first 2 cm of sediment were sampled using a spatula. Granulometric analysis were based on the method of Folk and Ward (1957) for granules of over 2 mm.

At the laboratory, the samples were weighed dry and sieved through a 63 µm mesh screen (230 Tyler Screen System) to retain the fraction for foraminiferal analysis. Subsequently, in each sample, between 100 and 300 foraminifera were extracted with a 000 brush under a binocular magnifying glass (Nikon SMZ645) and ordered in porta microfossils. Individuals of the most represented species were photographed with an Electronic Scanning Microscope. SEM images were taken with FEI Inspect S50 SEM at the Characterization of Materials Department, in the Centro Atómico Bariloche (CAB), Bariloche, Argentina. The specimens were stored at the repository of Universidad Nacional del Comahue, Río Negro province, Argentina, under numbers UNC-PMIC 165–176.

The identification at the suprageneric level was carried out following the descriptions of Loeblich and Tapan (1992) with modification following Sen Gupta (1999) and Pawlowski *et al.* (2013). For lower levels we used the most appropriate specific bibliography for this area such as (Boltovskoy *et al.*, 1980; Laprida, 1997, 1999; Calvo-Marcilese, 2011 and Márquez, 2017).

Also, we obtained data on total abundance and specific richness as well as Shannon-Wiener's and dominance indexes; with the purpose of describe the diversity variation in this area (Murray, 2006; Hayek & Buzas, 2013). The results of the counts in each sample were expressed as the number of individuals obtained by each 10 grams of dry sediment.

The genera of foraminifers were classified according to microhabitat infaunal, epifaunal or both epifaunalinfaunal. It was made following the classification of Duleba *et al.* (1999), Ferrero (2006) and Bernasconi (2006).

Three taphonomic levels were defined based on Brandt (1989) and Laprida & Bertels-Psotka (2003): a) well preserved shells, lacking at the most the last chambers; b) "black" shells with chamber fillings and/or with a polished coating in shades of black and dark brown, c) broken and sometimes fractured shells.

Cluster analysis was performed to determine sample groups, based on the relative abundances of benthic foraminiferal taxa in each sample. This analysis determined the level of similarity between samples by comparing the proportions of species in their assemblages. Species with abundance greater than 2% were used to determine the similarity between samples. Clustering was carried out using the UPGMA pair group method with Euclidean distance as a similarity index in PAST 3.2 (Paleontological Statistics Program) developed Hammer *et al.* (2001).

Results

Taxa composition. The total abundance of benthic foraminifera was 51170 individuals. We identified 31 species grouped within 17 genera and 13 families. The association of foraminifera was composed mainly of hyaline (85.5%) and agglutinated (14.1%) forms, and the percentage of porcelanaceous forms was very low (0.4%). Hyaline forms prevailed in all of site. However, an increase in the proportion of agglutinated forms towards the west, near the mouth of the channel, was observed although its greater proportion was registered in the center of the channel (Fig. 2a). The abundance of benthic foraminifera per 10 g of sediment (A) varied between 1440 and 9320 individuals and diversity (S) between 5 and 24 taxa. Shannon—Wiener (H) diversity values were estimated between 0.7 and 2.1 and dominance (D) between 0.2 and 0.7 (Fig. 2b). The highest values of diversity and lowest dominance were located in the area closest to the mouth of the channel.

The assemblages were constituted by *Elphidium* aff. *poeyanum*, *Elphidium gunteri*, *Astrononion* sp.1, *Arenoparrella mexicana*, *Jadammina polystoma*, *Trochammina inflata*, and *Ammonia parkinsoniana* (Fig. 3, Table 1). Appendix A listed all foraminifer's species determineted.

The identified taxa are mainly epifaunal (32.4–97.7%) such as *Elphidium* spp. and epifaunal-infaunal forms such as *Astrononion* sp.1 and *Trochammina inflata* (0.5–81.1%). Infaunal forms such as *Ammonia* spp. were scarce and did not exceed 25% (0.7–22.5%) in the assemblages (Fig. 4a).

Figure 4b shows the distribution of the most representative species along the transect. *E. poeyanum* and *E. gunteri* constitute more than 50% of the associations in almost all samples. *Astrononion* sp.1 shows a high abundance in samples MS5(15), MS3(15) and the lowest in sample MS1(15). Finally, the agglutinated species *J. polystoma* and *A. mexicana*, although they were present in a lower percentage than 30% and characterized the middle part of the channel in samples MS2(14) and MS4(15).

	MS1 (14)	MS2 (14)	MS3 (14)	MS4 (14)	MS5 (14)	MS1 (15)	MS2 (15)	MS3 (15)	MS4 (15)	MS5 (15)	MS6 (15)
Ammonia parkinsoniana	430	100	20	20	100	0	10	10	170	140	10
Ammonia tepida	0	0	30	0	0	30	0	0	90	50	0
Arenoparrella mexicana	150	240	490	0	0	720	0	260	0	360	0
Astrononion sp.1	40	20	350	60	0	1790	10	1150	10	4920	0
Buccella peruviana	90	10	190	150	50	160	10	0	40	70	90
Buliminella elegantissima	0	0	10	0	0	20	0	0	30	0	0
Elphidium advenum	0	20	30	0	0	0	0	0	0	0	0
Elphidium articulatum	80	0	0	0	40	90	10	0	0	0	0
Elphidium excavatum	0	0	70	0	0	0	0	0	0	0	0
Elphidium gunteri	2590	140	490	810	2130	540	250	120	20	10	1200
Elphidium aff. poeyanum	3720	420	4510	5380	450	4800	1770	80	260	40	3120
Globocassidulina sp.	0	0	0	0	0	0	0	0	20	0	0
Hanzawaia boueana	0	20	0	0	0	0	0	0	60	0	0
Jadammina polystoma	170	90	290	40	0	530	260	120	530	400	0
Quinqueloculina sp.	0	0	110	0	0	10	0	0	0	0	0
Trochamm inainflata	0	280	50	90	0	430	220	130	260	0	0
Trochammina ochrea	70	70	50	50	40	40	30	30	30	10	10

TABLE 1. Taxonomic composition distribution of the species with 5% of abundance in at least one sample. The most abundant species are underline in gray.

Characterization of study area and taphonomic features. The transect has a maximum height of 4 m.s.n.m and a minimum of 1 m.s.n.m, the lower areas are close to the coastline. The results of the granulometric analysis show that the sediments are composed of mud-sized particles limo-clay and sand (Fig. 5). The percentage of clay is \sim 50% of the dry weight, predominates in more than 90% of the samples and increases from west to east. The sand-sized portion does not exceed 25% dry weight, except in sample MS6(15) and its percentages decrease from west to east along the transect.

The taphonomic modifications observed in the assemblages were mainly a) individuals with well-preserved shells or lacking at the most the last chambers (38–97%); b) individuals with "black" shells with chamber fillings and/or with a polished coating in shades of black and dark brown were scarce (2–6 %) and c) individuals broken and sometimes fractured shells reached 56% (Fig 5).

Foraminifer's assemblages. Based on the cluster analysis, we were able to recognize 3 groups of samples (A, B, C) along channel 15 (Fig. 6).

Association A consisting of 2 samples, MS3(15) and M5(15). The association of foraminifera is dominated by *Astrononion* sp.1. The abundance varies between 1910 and 6070. The values of D varied between 0.3 and 0.6 and H between 0.8 and 1.3.

Association B includes the largest number of samples such as MS6(15), MS4(14), MS3(14), MS2(15), MS1(15) and MS1(14). In this assemblage, *E*. aff. *poeyanum* predominated. The abundance varied between 4430 and 9320 individuals, the values of D varied between 0.3 and 0.7 and H between 0.7 and 1.6.

Association C comprises the 2 samples MS2(14) and MS4(15). This association is characterized by a considerable increase in the percentage of agglutinated species (close to 50%) such as *A. mexicana*, *J. polystoma*, *T. inflata*. The abundance varied between 1150 and 1430. The values of H were equal to 1.9 and D varied between 0.1 and 0.2 and H between 1.1 and 1.2.

Discussion

The Mixohaline wetlands of Samborombón bay in Argentina has an extension of around 244.000 has, of which more than 65% belongs to terrestrial ecosystems and the rest to aquatic systems. This unique environment has

distinctive characteristics due to its ecological diversity and richness of species, which gives this ecosystem international relevance (Bertoni & Bertoloti, 2004). In that context, Samborombón bay has been designated as a Ramsar site because it meets the criteria that identify wetlands of international relevance for the conservation of biological diversity. Samborombón Bay includes the internationally relevant Site of the Hemispheric Reserve Network for Shorebirds (WHSRN), the Campos del Tuyú National Park, the Samborombón Bay Integral Nature Reserve (RNI), the Wildlife Refuge (RVS), and the South area of the Parque Costero del Sur Biosphere Reserve, among others.

This study about foraminifers is one of the first micropaleontological studies conducted in the area. Biogeographically, the faunal composition is similar to the one found in the subprovince of norpatagonia (Boltovskoy, 1976). The assemblage of foraminifers was only benthonic, reflecting an internal shelf environment (Boltovskoy 1976; 1979). It was represented mainly by hyaline and agglutinated specimens, indicating that hypohaline lagoons and marshes environments (Murray, 1991) characterize the study area. An assemblage constituted by *Elphidium* aff. *poeyanum*, *Elphidium* gunteri, *Astrononion* sp.1, *Arenoparrella mexicana*, *Jadammina polysto*ma, *Trochammina inflata*, and *Ammonia parkinsoniana* was registered.

E. aff. *poeyanum, E. gunteri, A. parkinsoniana, A. tepida* and *Astrononion* sp.1 are hyaline species characteristic of marginal marine environments (Murray, 2006; Boltovskoy *et al.*, 1980).

Species of the epifaunal genus *Elphidium* were registered in muddy and sandy sediments of inner shelf, brackish hypersaline marshes and lagoons (Murray, 1991); whereas the most common epifaunal species found in these same ecosystems are *E.* aff. *poeyanum* and *E. gunteri* (Murray, 2006). Specifically, *E.* aff. *poeyanum* has been reported in more restricted, marginal marine environments (Calvo-Marcilese, 2011; Laprida *et al.*, 2011; Márquez, 2016) and shallow waters of coastal environments of the Argentine Continental shelf (Alperin *et al.*, 2008, 2010; Bernasconi *et al.*, 2018). On the other hand, *Elphidium gunteri* was reported as the dominant species in the marshes and lagoons of the Gulf of Mexico; the northern limit of Long Island Sound (USA) (Murray, 2006); the brackish waters of Lago dos Patos (Brazil) and in other sites of Argentina such as Río Quequén (Boltovskoy *et al.*, 1980) and the coastal environments of Mar Chiquita and General Pueyrredón (Márquez, 2017). Calvo-Marcilese and Pratolongo (2009) also reported these two species *E.* aff. *poeyanum* and *E. gunteri* in marshes and tidal flats of the Bahía Blanca estuary (Argentina).

The species of the Ammonia genus are infaunal organisms present in muddy-sandy sediments typical of brackish marshes and lagoons, and brackish marine environments from inner shelf to upper bathyal waters (Murray, 2006). It is most common in marsh to subtidal sediments with highly variable mud and TOC contents. This genus is able to tolerate salinities up to 50 ups, and it was thus registered in sites with large salinity variations, as well as in sites with very low salinity (less than 1psu) (Zaninetti, 1982; Márquez, 2017). A. parkinsoniana is distributed in hypohaline and fresh water environments from the Río de la Plata and Mar Chiquita (Boltovskoy et al., 1980), and A. tepida has been reported in recent coastal environments in Mar Chiquita and General Pueyrredon, Argentina (Márquez, 2017). Ammonia tepida is commonly encountered in restricted environments under stress of pollution from anthropogenic sources (Alve, 1995; Yanko et al., 1994, 1999; Culver & Buzas 1995; Sousa et al., 1997; Bonetti et al., 1997; Debenay et al. 2000, 2001; Van der Zwaan, 2000 and Belart et al., 2017). In the state of Rio de Janeiro, A. tepida was the dominant species in Guanabara Bay and Itaipu Lagoon (Vilela et al., 2004). This species was also found in Italy: in the most confined areas of the Laguna di Orbetello (Tuscany), Lago di Varano (Apulia) and Stagno di Santa Gilla (Sardinia) (Frontalini et al. 2009, 2010, 2014). Calvo-Marcilese and Pratolongo (2009) and Márquez (2017) reported these two species A. parkinsoniana and A. tepida in marshes and tidal flats of the Bahía Blanca estuary. Since these species are typical from brackish water environments, this demonstrates the influence of freshwater in this system (Martins et al. 2015). However, these species also show eurytopic behavior because they were reported in others coastal lagoons with very different environmental conditions, such as Bizerte Lagoon (Tunisia), which is hypersaline and with a large and sustainable flux of high quality nutrients (Martins et al., 2015). Ammonia tepida and E. gunteri are considered opportunistic species in areas with marked pollution and anthropic impact (Cearreta and Leorri, 2000; Calvo-Marcilese & Langer 2010; Calvo-Marcilese, 2011).

There was a heterogeneous distribution of abundant individuals of *Astrononion* spp., this genus is epifaunalinfaunal and is distributed in muddy sediments from inner shelf up to bathyal environments (Murray, 1991). Species such as *Astrononion gallowayi* Loeblich and Tappan are characteristic of both polar and temperate, inner and outer shelf, estuarine environments (Finger & Lipps, 1981) whereas *Astrononion echolsi* were found in restricted areas from Mar Chiquita (Márquez, 2016).

FIGURE 2.a. Distribution of Hyaline (H), Porcelanaceus (P) and Agglutinated (A) individuals for each sample, and **b.**Plot of abundance and diversity parameters: species number (S) and Shannon-Wiener (H), Dominance (D) and individuals/ 10 grams of sediment (A).

FIGURE 3. 1. *Elphidium* aff. *poeyanum* (d'Orbigny), UCN–PMIC–165, Scale: 200 μm **2.** *Elphidium* aff. *poeyanum* (d'Orbigny), UCN–PMIC–166, Scale: 200 μm. **3.** *Elphidium gunteri*Cole, 1931, UCN–PMIC–167.Scale: 200 μm. **4.** *Ammonia parkinsoniana* (d'Orbigny, 1839), UCN–PMIC–168. Scale: 200 μm. **5.** *Ammonia tepida* (Cushman, 1926), UCN–PMIC–169. Scale: 200 μm. **6.** *Ammonia tepida* (*Cushman, 1926*), UCN–PMIC–170, Scale: 200 μm. **7.** *Buccella peruviana* (d'Orbigny, 1839), UCN–PMIC–171. Scale: 100 μm. **8.** *Buccella peruviana* (d'Orbigny, 1839), UCN–PMIC–172. Scale: 100 μm. **9.** *Jadammina polystoma* Bartenstein & Brand, 1938, UCN–PMIC–173. Scale: 100 μm. **10.** *Arenoparrella mexicana* (Kornfeld, 1931), UCN–PMIC–174. Scale: 100 μm **11.** *Trochammina ochracea* (Williamson, 1858) UCN–PMIC–175, Scale: 100 μm. **12.** *Astrononion* sp.1, UCN–PMIC–176. 3. Scale: 100 μm

FIGURE 4. a. Microhabitat: Epifauna (E), Epifaunal-Infaunal (E–I) and Infaunal (I). **b.** the most representative species of the foraminiferal assemblages.

In the case of agglutinated species, the most representative was *A. mexicana*, *J. polystoma*, *T. inflata* and *T. ocrea*. In particular, *A. mexicana* and *J. polystoma* are described as characteristic species of hypohaline fresh waters from Argentine (Boltovskoy *et al.*, 1980).

Arenoparrella is described as epifaunal in muddy sediment found mainly in intertidal marshes and sometimes on shelf-upper bathyal waters (Murray 1991). *Arenoparrella mexicana* was registered by Murray (2006) as a most abundant in all subenvironments. It was abundant on Gulf of Mexico marshes, present in European and north California marshes (Kemp *et al.*, 2010) and in Salicornia–Spartina zones and mangals (Phleger 1967; Murray, 2006). It was also reported in hypohaline and freshwater from of Lago dos Patos (Brazil) and several hypohaline areas in the northern of Argentina (Boltovskoy *et al.*, 1980).

Jadammina is epifaunal living in mud or silt sediment in high intertidal marsh. Jadammina polystoma is a species characteristic of high intertidal marsh environmental (Murray 2006). This species was found in the coastal sediments from the German Baltic Sea (Frenzel *et al.*, 2005). Jadammina polystoma and this species were reported in the lower part of the estuaries (Phleger and Bradshaw, 1966; Scott & Medioli 1980; Sen Gupta 2002). J. polystoma was found in fresh waters of Río Quequén (Puerto Deseado, Boltovskoy *et al.*, 1980). It was registered in the littoral of Mar chiquita and General Pueyrredon, and in marshes and tidal flats of the estuary of Bahía Blanca, Argentina (Calvo-Marcilese & Pratolongo, 2009; Calvo-Marcilese 2011; Márquez, 2017).

Trochammina is epifaunal or infaunal living in 0 to >6000 m in intertidal, shelf, bathyal and abyssal waters (Murray, 1991). *Trochammina inflata* is herbivore or detritivore (Matera & Lee, 1972) and can be found at depths of 60 cm in the sediments. It is almost universally present on high to mid marshes throughout the world, and it is widely distributed in the Argentine continental margin; in particular, it was reported in Puerto Deseado and Río Quequén (Boltovskoy *et al.*, 1980). Calvo-Marcilese and Pratolongo (2009) reported this species in tidal marshes and tidal flats of the Bahía Blanca estuary. On the other hand, *T. ocrea* was reported in brackish water of lago Dos Patos, Río de la Plata, Mar Chiquita and in the coastal of Buenos Aires province (Boltovskoy 1980; Laprida *et al.* 2011; Márquez, 2017).

The foraminifera of the coastal plain of Samborombón Bay present a relatively low diversity. This may be due to an environment of high instability (as evidenced by the values of H), with distal to normal marine conditions (Buzas & Gibson, 1969). These values are consistent with those reported for extreme environments such as marshes, mangals, lagoons, estuaries, fjords and deltas (Murray, 2006). The low diversity found in this zone would suggest that the salinity in the water is less than the optimal for the normal development of foraminifera. This low diversity has been mentioned by Calvo-Marcilese (2011) and Márquez (2017) in reports of investigations conducted near the present area of study. The dominance was variable along the channel.

On the other hand, the morphology of benthic foraminifera is related to microhabitat preferences: epifaunal species have walls with pores that are either absent or only on one side of the carapace, whereas infaunal species have pores distributed all over the entire surface of the carapace (Corliss & Chen, 1988). The high surface / volume ratio of the infaunal species, as well as a high pore density in the shell, are interpreted as adaptations to low concentrations of oxygen within the sediment (Corliss & Chen, 1988; Bernasconi & Cusminsky, 2005). In agreement with this, when oxygen levels become a limiting factor, epifaunal species are affected first and their abundance decreases (Smart, 2002). High productivity is sometimes associated with low oxygen levels in the sediments of the surface as a result of the oxidation of organic matter. These environmental factors reflect the availability of food (Hayward *et al.*, 2002) and strongly influence the distribution of the foraminifera. In the area of study, the assemblage was characterized mainly by epifaunal microhabitats harboring species such as *Elphidium* aff. *poeyanum* and *E. gunteri*. These species were better represented in the samples localized in the interior of the channel 15, where the environment is well oxygenated (Corliss & Chen, 1988). In the central area and towards the mouth of the channel, the number of species that shared the epifaunal-infaunal microhabitat, such as *Astrononion* sp.1 and *Trochammina inflata*, increases. In contrast, the infaunal forms are very rare and are distributed throughout the channel.

The transect has a maximum height of 4 m.s.n.m and a minimum of 1 m.s.n.m towards to the coastline, and it is characterized by muddy sediments. The sand-sized portion is relatively low with exception of one sample collected in the interior of the channel, whose sand percentages decrease from west to east following the transect. Bértola and Morosi (1997) suggest that the high percentage of clays indicates that the contribution of sediments from Punta Piedras to Channel 9 comes from the North and it is little influenced by marine dynamics. In studies carried out by many authors, the type of sediment was considered as a relevant parameter in the development and distribution of the foraminifera fauna. For example, Bernhard (1986) suggested that variations in the shape of

benthic foraminifera may be due to sedimentological differences (see also Boltovskoy, 1965; Schmiedl *et al.*, 1997 and Yanko *et al.*, 1999). Indeed, more recent studies (Hayward *et al.*, 1996; Bernasconi & Cusminsky 2005, 2015 and Bernasconi *et al.*, 2018) consider the percentage of mud as one of the factors that affect most significantly the distribution of this fauna. Also, in the fine sediments, there is a large amount of organic matter, which implies more availability of food than in other types of sediments. As a consequence, a larger number of individuals would contribute to the development of the foraminifer's assemblage in fine sediments (Boltovskoy, 1963; Corliss & Chen, 1988).

FIGURE 5. Proportions of specimens from taphonomic analysis categorized according to one of three preservation groups for each station: A) well preserved shells, lacking at the most the last chambers; B) "black" shells with chamber fillings and/or with a polished coating in shades of black and dark brown and C) broken and fractured shells; elevation and type of sediment (% sand and clay).

FIGURE 6. a. Dendogram of samples grouped by species composition according assemblages A, B and C with map of study area showing them.

From the taphonomic aspect, the amount of disturbance, or rework and transport, of the associations of foraminifera reflected a degree of preservation from very good to poor. In this study, the assemblages in general presented well-preserved individuals along the whole channel, suggesting an autochthonous fauna in an area where the conditions are favorable for its development. Nevertheless, some taphonomic processes that affected the associations were observed, such as change of coloration, fragmentation and abrasion of the shells. Fractured shells and even broken individuals were observed in samples from the center area near the coastline. This damage may have been caused by environmental stress and/or mechanical damage, possibly as a result of transportation or reworking (Yanko *et al.*, 2002; Laprida & Bertels-Psotka 2003). Individuals with "black" or dark brown coloration

were scarce and were registered with greater proportion in one sample at the center of the channel. This process is produced by the diagenetic modification of the mineralogical composition of the shells, whereas the brown coloration may suggest the presence of toxins from terrestrial sources due to anthropic activity (Yanko *et al.*, 2002; Laprida & Bertels-Psotka 2003). The different degrees of preservation registered are in agreement with previous reports (Laprida *et al.*, 2011), which reported that these processes were related to water energy, aerial exposure and beach dynamics.

In spite of having a general fauna characteristic of these environments, the grouping analysis shows that there are small microenvironments that harbor distinctive groups formed by some of the species that characterized the diversity and abundance of the foraminifera found along the channel 15. In this context, different associations could be recognized. Association A, dominated by *Astrononion* sp.1 was registered in the central part of the channel. This epifaunal-infaunal microhabitat was very abundant in this area. Association B, occupied the internal and external areas of the channel, and it was characterized mainly by hyaline and epifaunal species as *E*. aff. *poeyanum, Elphidium gunteri* and *Elphidium* spp. with high abundance and dominance values. Association C was characterized by a considerable increase in the abundance of agglutinated species such as *A. mexicana, J. polystoma, T. inflata* near the mouth of the channel. The abundance and dominance was relatively low. Epifaunal and epifaunal forms were in minor proportion.

This analysis shows a heterogeneous distribution of the foraminifera along the channel 15. The diversity and abundance of recent assemblages is frequently determined by local environmental conditions. Laprida *et al.* (2011) described patchy geographic distributions in shallow waters that correlated with local environmental parameters in modern sediments near the area of study. In the present work, the observed differential distribution resulted from variations in the taxa composition and in the degree of preservation. The ecological preferences determined for each taxon are correlated with variations in salinity content within the marsh environment. While the analysis of the state of preservation of the shells provided information about the processes that, the organisms have suffered in the sediments (Molina, 2004).

All the aforementioned indicates that there is a correlation between the distribution of the foraminiferal fauna and the salinity conditions. In addition, the type of sediment and distance to the coast determines the energy and dynamics of the environment, which, in turn, influences the diversity and distribution of the foraminifera taxa.

Conclusions

From the analysis of the recent foraminifera of channel 15, Samborombón Bay, we identified 31 species belonging to 4 Orders Rotaliida, Lituolida, Lagenida and Miliolida. The determined assemblages reflect an environment of marsh or floodplain. However, in the present work it is shown that in spite of having a general fauna well preserved characteristic of these environments, there are other taphonomic processes that expose particular conditions in the area related with oxygenation levels, proximity to the coast, and energy of the environment, among others. All of the above reveals the existence of small microenvironments characterized by the grade of preservation and a

differential distribution of the foraminifera, along the channel. This work represents a contribution to the knowledge of the foraminifera fauna from the continental shelf of Argentina, specifically of a marshes area such as Bahía Samborombón.

Acknowledgments

This research was supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) (Projects-PIP 112-201201-00021 and the National Agency for the Promotion of Science and Technology: Project-PICT-2014-1271). The authors wish to thank P. Troyon (Centro Atómico Bariloche) for preparing SEM samples and M. Luengo for provide us with the study material. To M. Nadal for reviewing the English version of this manuscript.

References

Alve, E. (1995) Benthic foraminiferal responses to estuarine pollution: a review. Journal of Foraminiferal Research, 25 (3),

190-203.

https://doi.org/10.2113/gsjfr.25.3.190

- Ballesteros, A. & Bernasconi, E. (2017) Estudio preliminar de la distribución de los foraminíferos bentónicos provenientes de sedimentos recientes de Canal 15 (Bahía Samborombón, Argentina). 17º Congresso Latino-Americano de Ciências do Mar, COLACMAR 2017, Associação Latino-Americana de Pesquisadores em Ciências do Mar, ALICMAR, 2017, 349– 350.
- Ballesteros, A. & Bernasconi, E. (2018) Paleoenvironmental inferences from a late Quaternary marine sequence in Samborombón bay, Buenos Aires province (South America). Forams 2018 Foraminifera in a Changing World, 17–22 junio, Edimburgo, Londres. Available from: http://forams2018.wp.st-andrews.ac.uk/symposium-schedule/ (accessed 5 February 2018)
- Belart, P., Laut, V.M., Clemente, I., Raposo, D., Martins, V., Frontalini, F., Lorini, M., Fortes, R. & Laut, L. (2017) Living benthic Foraminifera from the Saquarema lagoonal system (Rio de Janeiro, southeastern Brazil). *Check List*, 13 (2), 1–8. https://doi.org/10.15560/13.2.2062
- Bernasconi, E. (2006) Los foraminíferos del Holoceno de testigos de la plataforma continental Argentina (40° 30′-42° 48′LS y 59°25′ 64° 40′LO). Unpublished PhD thesis, Universidad Nacional del Comahue, San Carlos de Bariloche, 210 pp.
- Bernasconi, E. (2018) Paleoenvironmental changes on coastal plain, Buenos Aires province, Argentina: last 2700 years. *Congreso, Forams 2018, Foraminifera in a Changing World*, 17–22 junio, Edimburgo, Londres. Available from: https:// www.conicet.gov.ar/new_scp/detalle.php?keywords=&id=32124&congresos=yes&detalles=yes&congr_id=7382071 (accessed 5 February 2018)
- Bernasconi, E. & Cusminsky, G. (2005) Distribución de Nonionella auris (d'Orbigny) (Foraminiferida) en el golfo San Matías, Provinciade Río Negro, Argentina. *Ameghiniana*, 42, 167–174.
- Bernasconi, E. & Cusminsky, G. (2007) Estudio de los foraminíferos bentónicos de un testigo holoceno proveniente de la cuenca del Colorado. *Ameghiniana*, 44, 271–278.
- Bernasconi, E. & Cusminsky, G. (2015) Study of the distribution of Elphidium aff. Poeyanum (d'Orbigny) and Buccella peruviana (d'Orbigny) from the Colorado basin (South America): Holocene paleoenvironmental inferences. *The Holocene*, 25, 810–819.
 - https://doi.org/10.1177/0959683615571424
- Bernasconi, E., Mansilla, M. & Cusminsky, G. (2018) Recent benthic foraminifers from the south Atlantic shelf of Argentina. *Journal of Foraminiferal Research*, 48 (3), 210–222.
- Bernhard, J. (1986) Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits: Jurassic through Holocene. *Journal of Foraminiferal Research*, 16 (3), 207–215. https://doi.org/10.2113/gsjfr.16.3.207
- Bértola, M. & Morosi, M. (1997) Caracterización textural de depósitos de ambientes de marea de la Bahía Samborombón (Buenos Aires, Argentina). *Revista de la Asociación Argentina de Sedimentología*, 4 (1), 1–13.
- Bértola, G., Cortizo, L. & Pastorino, S. (1998) Delimitación de ambientes costeros en la Bahía Samborombón mediante información satelitaria. *5as Jornadas Geológicas y Geofísicas Bonaerenses*, Mar del Plata, 1998, pp. 217–225.
- Bertoni, M. & Bertolotti, M. (2004) Criterios para el manejo de Áreas Naturales Protegidas del Humedal de Bahía de Samborombón. VI Jornadas Nacionales de Investigación Acción en Turismo Ushuaia. Available from: http:// nulan.mdp.edu.ar/1707/ (accessed 5 February 2018)
- Boltovskoy, E. (1963) Foraminíferos y sus relaciones con el medio. *Revista del Museo. Argentino de Ciencias Naturales*, Hidrobiología, 1 (2), 21–107.
- Boltovskoy, E., (1965) Los Foraminíferos Recientes (Biología, métodos de estudio, aplicaciones oceanográficas). Eudeba, Buenos Aires, 510 pp.
- Boltovskoy, E. (1976) Distribution of recent foraminifera of the South American region. *In*: Hedley, R.H. & Adams, C.G. (Eds.), *Foraminifera. Vol. 2*. Academic Press, London, pp. 171–236.
- Boltovskoy, E (1979) Paleoceanografia del Atlántico Sudoccidental desde el Mioceno, según estudios foraminiferológicos. Ameghiniana 16, 357–389.
- Boltovskoy, E., Giussani, G., Watanabe, S. & Wright, R. (1980) *Atlas of benthic shelf foraminifera to the southwest Atlantic*. Dr. W. Junk by Publishers, The Hague, 154 pp.
- Bonetti, C., Debenay, J. & Eichler, B. (1997) Deformation in benthic foraminifer tests from a polluted Brazilian coastal system. *In: The First International Conference Application of Micropaleontology in Environmental Sciences, Tel Aviv. Program and Abstracts.* Anamet Ltd., Herzlia, pp. 41–42.
- Brandt, D. (1989) Taphonomic grades as a classification for fossiliferous assemblages and implications for paleoecology. *Palaios*, 4 (4), 303–309.

https://doi.org/10.2307/3514554

- Buzas, M.A. & Gibson, T.G. (1969) Species diversity: Benthonic Foraminifera in Western North Atlantic. *Science*, 163 (3862), 72–75.
- Calvo-Marcilese, L. (2011) Holoceno del área del estuario de Bahía Blanca, Argentina. Unpublished PhD thesis, Universidad Nacional del Comahue, San Carlos de Bariloche, 255 pp.
- Calvo-Marcilese, L. & Langer, M. (2012) Ontongenetic morphogenesis and biogeographic patterns: Resolving taxonomic incongruences within "species" of Buccella from South American coastal waters. *Revista Brasilera de Paleontología*, 15,

23–32.

https://doi.org/10.4072/rbp.2012.1.02

- Calvo-Marcilese, L. & Pratolongo, P (2009) Foraminíferos de marismas y llanuras de marea del estuario de Bahía Blanca, Argentina: distribución e implicaciones ambientales. *Revista Española de Micropaleontología*, 41 (3), 315–332.
- Calvo-Marcilese, L., Pérez-Panera, J.P., Cusminsky, G. & Gómez, E.A. (2013) Micropaleontological record of Holocene estuarine stages in the Bahía Blanca estuary, Argentina. *Journal of South American Earth Sciences*, 45, 147–159. https://doi.org/10.1016/j.jsames.2013.03.005
- Canziani, O., Canziani, P., Fernandez-Cirelli, A., Codignotto, J., Gimenez, J., Iraut, M. & Volpedo, A. (2013) Aportes para abordar la adaptación al cambio climático en la bahía Samborombón. *Boletín técnico de la Fundación Vida Silvestre Argentina*, Agosto 2013, 1–256.
- Cavallotto, J., Violante, R. & Parker, G. (2004) Sea-level fluctuations during the last 8600 yrs in the de la Plata River, Argentina. *Quaternary International*, 114 (1), 155–165. https://doi.org/10.1016/S1040-6182(03)00050-8
- Carol, E., Kruse, E. & Pousa, J. (2008) Environmental hydrogeology of the southern sector of the Samborombón bay wetland, Argentina. *Environmental Geology*, 54, 95–102. https://doi.org/10.1007/s00254-007-0796-5
- Carol, E., Mas-Pla, J. & Kruse, E. (2013) Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay, Argentina. *Applied Geochemistry*, 34, 152–163. https://doi.org/10.1016/j.apgeochem.2013.03.006
- Cearreta, A. & Leorri, E. (2000) La transformación ambiental reciente de la Ría de Bilbao: Indicadores micropaleontológicos en el registro sedimentario estuarino. *Naturalia Cantabricae*, 1, 21–31.
- Corliss, B.H. & Chen, C. (1988) Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. *Geology*, 16, 716–719.

https://doi.org/10.1130/0091-7613(1988)016<0716:MPONSD>2.3.CO;2

- Culver, S.J. & Buzas, M.A. (1995) The effects of anthropogenic habitat disturbance, habitat destruction, and global warming on shallow marine benthic foraminifera. *Journal Foraminifera Research*, 25, 204–211. https://doi.org/10.2113/gsjfr.25.3.204
- Cusminsky, G., Martínez, D. & Bernasconi, E. (2006) Foraminíferos y ostrácodos de sedimentos recientes del estuario de Bahía Blanca, Argentina. *Revista Española de Micropaleontología*, 38 (2–3), 395–410.
- Cusminsky, G., Bernasconi, E. & Calvo-Marcilese, L. (2009) Holocene benthic foraminifera from Bahía Blanca estuary: a review and update of systematic and palaeoenvironmental aspects. *The Holocene*, 19, 1221–1231. https://doi.org/10.1177/0959683609345085
- Debenay, J.P., Guillou, J.J., Redois, F. & Geslin, E. (2000) Distribution trends of foraminiferal assemblages in paralic environments: a base for using foraminifera as bioindicators. *In*: Martin, R.E. (Ed.), *Environmental Micropaleontology*. *Topics in Geobiology 15*. Kluwer Academic/Plenum Publishers, NewYork, pp. 39–67. https://doi.org/10.1007/978-1-4615-4167-7 3
- Debenay, J.P., Tsakiridis, E., Soulard, R.Y. & Grossel, H. (2001) Factors determining the distribution of foraminiferal assemblages in Port Joinville Harbor (Ile d'Yeu, France): the influence of pollution. *Marine Micropaleontology*, 43, 75–118.

https://doi.org/10.1016/S0377-8398(01)00023-8

- Duleba, W., Debenay, J.P., Eichler, B.B. & De Mahiques, M.M. (1999) Holocene environmental and water circulation, changes: Foraminifer morphogroups evidence in Flamengo Bay (SP, Brazil). *Journal of Coastal Research*, 15 (2), 554–571.
- Ferrero, L. (2006) *Micropaleontología y Paleoecología del Cuaternario del sudeste de la provincia de Buenos Aires*. Unpublished PhD thesis, Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas and Naturales, La Plata, 373 pp.
- Finger, K.L. & Lipps, J.H. (1981) Foraminiferal decimation and repopulation in an active volcanic caldera Deception Island, Antarctica. *Micropaleontology*, 27 (2), 111–139. https://doi.org/10.2307/1485283
- Folk, R.L. & Ward, C.W. (1957) Brazos River bar [Texas]; a study in the significance of grain size parameters. *Journal of Sedimentary Research*, 27 (1), 3–26.

https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

- Frenzel, P., Tech, T. and Bartholdy, J. (2005) Checklist and annotated bibliography of Recent Foraminiferida from the German Baltic Sea coast. *Studia Geologica Polonica*, 124, 67–86.
- Frontalini, F., Buosi, C., Da Pelo, S., Coccioni, R., Cherchi, A. & Bucci, C. (2009) Benthic foraminifera as bio-indicators of trace element pollution in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy). *Marine Pollution Bulletin*, 58, 858–877.

https://doi.org/10.1016/j.marpolbul.2009.01.015

Frontalini, F., Coccioni, R. & Bucci, C. (2010) Benthic foraminiferal assemblages and trace element contents from the lagoons of Orbetello and Lesina. *Monitoring & Environmental Analysis*, 170, 245–260. https://doi.org/10.1007/s10661-009-1229-6

Frontalini, F., Semprucci, F., Armynot du Châtelet, E., Francescangeli, F., Margaritelli, G., Rettori, R., Spagnoli, F., Balsamo,

M. & Coccioni, R. (2014) Biodiversity trends of the meiofaunal and foraminiferal assemblages of Lake Varano (southern Italy). *Proceedings of the Biological Society of Washington*, 127, 7–22. https://doi.org/10.2988/0006-324X-127.1.7

- Fucks, E.E., Schnack, E.J. & Aguirre, M.L. (2010) Nuevo ordenamiento estratigráfico de las secuencias marinas del sector continental de la bahía Samborombón, provincia de Buenos Aires. *Revista de la Asociación Geológica Argentina*, 67, 27– 39.
- Finger, K.L. & Lipps, J.H. (1981) Foraminiferal decimation and repopulation in an active volcanic caldera Deception Island, Antarctica. *Micropaleontology*, 27 (2), 111–139. https://doi.org/10.2307/1485283
- Garreaud, R.D., Vuille, M., Compagnucci, R. &Marengo, J. (2009) Present-day south American climate. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 281 (3–4), 180–195. https://doi.org/10.1016/j.palaeo.2007.10.032
- Guerrero, R., Acha, E., Frami-an, M. & Lasta, C. (1997) Physical oceanography of the Rio de la Plata Estuary, Argentina. *Continental Shelf Research*, 17, 727–742.
 - https://doi.org/10.1016/S0278-4343(96)00061-1
- Hammer, O., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. *Palaeontologia Electronica*, 4 (1), 1–9.
- Hayek, L.A. & Buzas, M. (2013) On the proper and efficient use of diversity measures with individual field samples. *Journal of Foraminiferal Research*, 43 (3), 305–313. https://doi.org/10.2113/gsjfr.43.3.305
- Hayward, B, Grenfell, H, Cairns, G. & Smith, A. (1996) Environmental controls on benthic foraminiferal and thecamoebian associations in a New Zealand tidal inlet. *Journal of Foraminiferal Research*, 26, 150–171. https://doi.org/10.2113/gsjfr.26.2.150
- Hayward, B., Neil, H., Carter, R., Grenfell, H. & Hayward, J. (2002) Factors influencing the distribution patterns of recent sea benthic foraminifera, east of New Zealand, Southwest Pacific Ocean. *Marine Micropaleontology*, 46, 139–176. https://doi.org/10.1016/S0377-8398(02)00047-6
- Laprida, C. (1997) Micropaleontología (Ostrácodos y foraminíferos) y paleoecología del Cuaternario Tardío del Noroeste de la Provincia de Buenos Aires, República Argentina. Unpublished PhD thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 555 pp.
- Laprida, C. (1999) Micropaleontological assemblages (Foraminiferida and Ostracoda) from Late Quaternary marginal marine environments (Destacamento Río Salado Formation), Salado Basin, Argentina. *Revue Paleobiologie*, 17, 461–478.
- Laprida, C. & Bertels-Psotka, A. (2003) Benthic foraminifers and paleoecology of a Holocene Shelly concentration, Salado Basin, Argentina. *Geobios*, 36, 559-572.

https://doi.org/10.1016/S0016-6995(03)00061-5

Laprida, C., García-Chapori, N., Violante, R. & Compagnucci, R. (2007) Mid-Holocene evolution and paleoenvironments of the shoreface-offshore transition, northeastern Argentina: New evidence based on benthic microfauna. *Marine Geology*, 240, 43–56.

https://doi.org/10.1016/j.margeo.2007.02.001

- Laprida, C., Chandler, D.D.E., Mercau, J.R., Alvaro López, R. & Marcomini, S. (2011) Modern foraminifera from coastal settings in northern Argentina: implications for the paleoenvironmental interpretation of Mid Holocene littoral deposits. *Revista Mexicana de Ciencias Geológicas*, 28 (1), 45–64.
- Loeblich, A.R. & Tappan, H. (1992) Present status of foraminiferal classification, in Studies in Benthic Foraminifera. In: Takayanagi, Y. & Saito, T. (Eds.), Proceedings of the Fourth International Symposiumon Benthic Foraminifera: Sendai, 1990 (Benthos '90). Tokai University Press, Tokyo, pp. 93–102.
- Luengo, M., Bernasconi, E., Vilanova, I. & Fucks, E. (2018) Past environmental changes during the Late Holocene sea-level fall (last 2.7 Ka) at Bahía Samborombón, NE coastal plain (Argentina). *Journal of South American Earth Sciences*, 85, 362–373.

https://doi.org/10.1016/j.jsames.2018.05.012

- Márquez, M. (2017) Ecología y paleoecología de foraminíferos en ambientes litorales del sudeste de la provincia de Buenos Aires (partidosde Mar Chiquita y Gral. Pueyrredón), Argentina. Unpublished PhD thesis, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, 257 pp.
- Márquez, M. & Ferrero, L. (2011) Paleoecología de foraminíferos de un testigo holoceno en la planicie costera de la laguna Mar Chiquita, Buenos Aires, Argentina. *Ameghiniana*, 48, 289–304. https://doi.org/10.5710/AMGH.v48i3(338)
- Márquez, M., Ferrero, L. & Cusminsky, G. (2016) Holocene palaeoenvironmental evolution of the Pampa coastal plain (Argentina) based on calcareous microfossils. *Revista Brasilera de Paleontología*, 19, 25–40. https://doi.org/10.4072/rbp.2016.1.03
- Martins, M., Zaaboub, N., Aleya, L., Frontalini, F., Pereira, E., Miranda, P., Mane, M., Rocha, F., Laut, L. & El Bour, M. (2015) Environmental quality assessment of Bizerte lagoon (Tunisia) using living foraminifera assemblages and a multiproxy approach. *PLoS ONE*, 10 (9), e0137250.

https://doi.org/10.1371/journal.pone.0137250

Matera, N.J. & Lee, J.J. (1972) Environmental factors affecting the standing crop of morphogenesis, systematics, and distribution of the Foraminifera. *Journal of the Royal Microscopical Society*, 56, 120–146.

- Molina, E. (2004) Particularidades de la fosilización de los microfósiles, Tafonomía. *In*: Molina, E. (Ed.), *Micropaleontología*. Prensas Universitarias de Zaragoza, Zaragoza, pp. 3–70.
- Murray, J.W. (1991) Ecology and palaeoecology of benthic foraminifera. Logman Scientific & Technical, London, 397 pp.
- Murray, J.W. (2006) Ecology and Palaeoecology of Benthic Foraminifera. Cambridge University Press, Cambridge, 426 pp.
- Pawlowski, J., Holzmann, M. & Tyszka, J. (2013) New supraordinal classification of Foraminifera: Molecules meet morphology. *Marine Micropaleontology*, 100 (1), 1–10. https://doi.org/10.1016/i.marmicro.2013.04.002
- Phleger, F.B. (1967) Marsh foraminiferal patterns, Pacific coast of North America. *Ciencia del Mar y Limnología México*, 1, 11–38.
- Phleger, F.B. & Bradshaw, J.S. (1966) Quantitative measures of sedimentary environments in marine marshes. *Coastal Reserarch Notes*, 2 (5), 7–8.
- Prieto, A.R., Mourelle, D., Peltier, W.R., Drummond, R., Vilanova, I. & Ricci, L. (2017) Relative sea level changes during the Holocene in the Río de La Plata, Argentina and Uruguay: a review. *Quaternary International*, 444, 35–49. https://doi.org/10.1016/j.quaint.2016.02.044
- Schenone, N., Volpedo, A.V. & Fernandez Cirelli, A. (2007) Trace metal contents in water and sediments in Samborombón Bay wetland, Argentina. *Wetland ecology and management*, 15 (4), 303–310. https://DOI 10.1007/s11273-006-9030-6
- Schenone, N., Volpedo, A. V. & Fernandez Cirelli, A. (2008) Estado trófico y variación estacional de nutrientes en los ríos y canales del humedal mixohalino de Bahía Samborombón (Argentina). *Limnética*, 27 (1), 65–72.
- Scott, D.B. & Medioli, F.S. (1980) Quantitative studies of marsh foraminiferal distribution in Nova Scotia: implications for sea level studies. *Cushman Foundation for Foraminiferal Research*, 17, 1–58.
- Sen Gupta, B.K. (1999) Systematics of modern Foraminifera. In: Sen Gupta, B.K. (Ed.), Modern Foraminifera. Kluwer Academic Publishers, Dordrecht, pp. 1–371. https://doi.org/10.1007/0-306-48104-9
- Smart, C.W. (2002) Environmental applications of deep-sea benthic foraminifera. In: Haslett, S.K. (Ed.), *Quaternary environmental micropalaeontology*. Arnold Publishers, Londres, pp. 14–58.
- Sousa, S., Duleba, W., Kfouri, P., Eichler, B. & Furtado, V. (1997) Response of foraminiferal assemblages to environmental changes in the São Sebastião Channel, northern coast of São Paulo State, Brazil. *In: The First International Conference Application of Micropaleontology in Environmental Sciences, Tel Aviv. Program and Abstracts.* Anamet Ltd., Herzlia, pp. 109–110.
- Van Der Zwaan G.J. (2000) Variation in Natural vs. Anthropogenic Eutrophication of Shelf Areas in Front of Major Rivers. In: Martin, R.E. (Eds.), Environmental Micropaleontology. Topics in Geobiology. Vol 15. Springer, Boston, MA, pp. 385–404. https://doi.org/10.1007/978-1-4615-4167-7_18
- Vilanova, I. & Prieto, A.R. (2012) Historia de la vegetación de las llanuras costeras de la Bahía Samborombón (35,5°S), Argentina, desde 7800 14C A-os AP. *Ameghiniana*, 49, 303–318. https://doi.org/10.5710/AMGH.v49i3(499)
- Vilela, C., Baptista, D., Baptista-Neto, A., Crapez, M. & Mcallister, J. (2004) Benthic foraminifera distribution in high polluted sediments from Niterói Harbor (Guanabara Bay), Rio de Janeiro, Brazil. *Anais da Academia Brasileira de Ciências*, 76 (1), 161–171.

https://doi.org/10.1590/S0001-37652004000100014

- Violante, R.A. & Cavallotto, J.L. (2004) Evolution of the semi-enclosed basins and surrounding coastal plains adjacent to the Pampean region, Argentina, Polish Geological Institute Special Papers, 11, 59–70.
- Violante, A. & Parker, G. (2004) The post-last glacial maximum transgression in the de la Plata River an adjacent inner continental shelf, Argentina. *Quaternary International*, 114, 167–181. https://doi.org/10.1016/S1040-6182(03)00036-3
- Volpedo, A., Yunes, T. & Cirelli, A.F. (2005) El humedal mixohalino de Bahía Samborombón: conservación y perspectivas, Humedales Fluviales de América del Sur. Hacia un manejo sustentable. [andmethod=post_andformato=2_andcantidad=1_andexpresion=mfn=020285] Available from: http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=LIBRI.xis (accessed 5_February 2018)
- Wetzel, R.G. (2001) Limnology: Lake and River Ecosystems. 3rd Edition. Academic P San Diego, CA, 1006 pp.
- Yanko, V., Kronfeld, J. & Flexer, A. (1994) Response of benthic foraminifera to various pollution sources:implications for pollution monitoring. *Journal of Foraminiferal Research*, 24 (1), 1–17. https://doi.org/10.2113/gsjfr.24.1.1
- Yanko, V., Arnold, A.J. & Parker, W.C. (1999) Effects of marine pollution on benthic Foraminifera. *In*: Sen Gupta, B.K. (Ed.), *Modern Foraminifera*. Kluwer Academic Publisher, Dordrecht, pp. 217–235.
- Yanko, V., Arnold, A. & Parker, W.C. (2002) Effects of marine pollution on benthic foraminifera. *In*: Sen Gupta, B.K. (Ed.), *Modern Foraminifera*. Kluwer Academic Publishers, Dordrecht, pp 371.
- Zaninetti, L., Altiner, D., Dager, Z. & Ducret, B. (1982) Les Milioliporidae (Foraminifères) dans le Trias supérieur à faciès récifal du Taurus, Turquie. Il: microfaunes associées. *Revue Paléobiol*, 1 (2), 105–139.

APPENDIX A. Systematic list of foraminifers.

Kindon Chromista Subkindon Rhizaria Phylum Foraminifera Class Globothalamea Pawlowski, Holzmann and Tyszka, 2013 SubclassTextulariia Mikhalevich, 1980 Order Lituolida Suborder Trochamminina Saidova, 1981 Superfamily Trochamminoidea Schwager, 1877 Family Trochamminidae Schwager, 1877 Subfamily Trochammininae Schwager, 1877 Genus Trochammina Parker and Jones, 1859 Trochammina inflata (Montagu, 1808) Trochammina ochrea (Williamson, 1858) Subfamily Arenoparellinae Saidova, 1981 Genus Arenoparrella Andersen, 1951 Arenoparrella mexicana (Kornfeld, 1931) Subfamily Jadammininae Saidova, 1981 Genus Jadammina Bartenstein and Brand, 1938 Jadammina polystoma Bartenstein and Brand, 1938 Order Rotaliida Delage and Hérouard, 1896 Super family Rotalioidea Ehrenberg, 1839 Family Ammoniidae Saidova, 1981 Subfamily Ammoniinae Saidova, 1981 Genus Ammonia Brünnich, 1772 Ammonia parkinsoniana (D'orbigny, 1839) Ammonia tepida (Cushman, 1926) Superfamily Nonionoidea Schultze 1854 Family Nonionidae Schultze 1854 Subfamily Astrononioninae Saidova 1981 Genus Astrononion Cushman and Edwards 1937 Astrononion echolsi Kennett 1967 Astrononion sp.1 Subfamily Nonioninae Schultze 1854 Genus Nonion Montfort, 1808 Nonion depressulus (Walker and Jacob 1798) Superfamily Serioidea Holzmann and Pawlowski 2017 Family Bolivinitidae Cushman 1927 Subfamily Bolivinitinae Cushman 1927 Genus Bolivina d'Orbigny 1839 BolivinaordinariaPhleger and Parker 1952 Bolivina plicata d'Orbigny 1839 Bolivina pseudoplicata Heron-Allen and Earland 1930 Bolivina striatula Cushman 1922 Bolivina variabilis (Williamson 1858) Superfamily Chilostomelloidea Brady 1881 Family TrichohyalidaeSaidova 1981 Genus Buccella Andersen 1952 Buccella peruviana (D'orbigny 1839) Family Anomalinidae Cushman 1927 Genus Hanzawaia Asano 1944 Hanzawaia boueana (d'Orbigny 1846) Superfamily Buliminoidea Jones 1875 Family Buliminidae Jones 1875 Genus Buliminad'Orbigny 1826 Bulimina patagonica d'Orbigny1839 Bulimina cf. B. pseudoaffinis Kleinpell 1938 Genus Buliminella Cushman 1911 Buliminella elegantissima (d'Orbigny 1839) Superfamily Planorbulinoidea Schwager 1877

Family Cibicididae Cushman 1927 Subfamily Cibicidinae Cushman 1927 Genus CibicidesMontfort 1808 Cibicides aknerianus (d'Orbigny 1846) Superfamily Discorboidea Ehrenberg 1838 Family Discorbidae Ehrenberg 1838 Genus Discorbis Lamarck 1804 Discorbis wiliamsoni Chapman and Parr 1932 Superfamily Rotalioidea Ehrenberg, 1839 Family Elphidiidae Galloway 1933 Subfamily Elphidiinae Galloway 1933 Genus Elphidium Montfort 1808 Elphidium advenum (Cushman 1922) Elphidium articulatum (d'Orbigny 1839) Elphidium excavatum (Terquem 1875) Elphidium gunteri Cole 1931 *Elphidium poeyanum* (d'Orbigny 1839) Class Tubothalamea Pawlowski, Holzman and Tyszka 2013 Order MiliolidaDelage and Hérouard 1896 Suborder Miliolina Superfamily Milioloidea Ehrenberg 1839 Family Hauerinidae Schwager 1876 Subfamily Hauerininae Schwager 1876 Genus Quinqueloculina d'Orbigny 1826 Quinqueloculina milletti (Wiesner 1923) Quinqueloculina seminula (Linnaeus 1758) Class Foraminifera incertae sedis Order Lagenida Delage and Hérouard 1896 Superfamily Polymorphinoidea Family Ellipsolagenidae Silvestri 1923 Subfamily Ellipsolageninae Silvestri 1923 Genus Fissurina Reuss 1850 Fissurina laevigata Reuss 1850 Fissurina quadricostulata Silvestri 1902 Superfamily Nodosarioidea Ehrenberg 1838 Family Lagenidae Reuss 1862 Genus Lagena Walker and Boys 1798 Lagena laevis (Montagu 1803)